Расчет редуктора системы верхнего привода
Определим диаметры валов:
быстроходного вала (Т1=105,3 НЧм):
промежуточного вала (Т2=4355НЧм):
тихоходного вала (Т3=12350 НЧм):
Окончательно выбираем из стандартного ряда: dв1=60 мм, dв2=95 мм, dв3=120 мм
Конструирование валов редуктора
Определим все диаметры валов редуктора.
Эскиз быстроходного вала
Рис. 3.1.
Выбираем из стандартного ряда на подшипники: dВ1П =75 мм
Эскиз промежуточного вала
Рис. 3.2.
Эскиз тихоходного вала
Рис. 3.3
d1 =130 мм . d2 =150 мм
3.3.2 Реакции в опорах валов
Для нахождения реакций в опорах валов составим расчётную схему.
Силовая схема привода
рис. 4
Силовая схема быстроходного вала:
рис. 5
Для того, чтобы найти реакции в опорах составим уравнения сил и моментов:
В вертикальной плоскости YOZ:
тогда:
В горизонтальной плоскости XOZ:
Силовая схема промежуточного вала:
рис. 6
В вертикальной плоскости YOZ:
В горизонтальной плоскости XOZ:
Силовая схема тихоходного вала:
рис.7
В вертикальной плоскости ХOZ:
В горизонтальной плоскости YOZ:
3.4 Проверочный расчёт вала
Задачей данного раздела является определение фактического коэффициента запаса в опасных сечениях вала и выбора материала вала и его размеры.
Критерием при расчётах является усталостная прочность с учётом изгиба и кручения.
Условие прочности можно записать:
(3.1)
где S – фактический коэффициент запаса; [S]= 2,5 – допускаемый коэффициент запаса.
Так как вал подвергается изгибу и кручению фактический коэффициент запаса определяется по формуле:
(3.2)
где Ss - коэффициент запаса прочности по нормальным напряжениям; St - коэффициент запаса прочности по касательным напряжениям.
Коэффициенты запаса прочности Ss и St можно определить по формулам:
где s-1 и t-1 – пределы выносливости стали при симметричном цикле изгиба и кручения; Ks и Kt - эффективный коэффициент концентрации нормальных и касательных напряжений; Kds и Kdt - масштабный фактор для нормальных и касательных напряжений; sa и ta – амплитуда цикла нормальных и касательных напряжений; sm и tm – среднее напряжение цикла нормальных и касательных напряжений; для углеродистых сталей, имеющих sВ=650ё750 МПа, принимают ys= 0,2; для легированных сталей ys=0,25ё0,30; yt - для упомянутых выше сталей принимают yt=0,1.
верхний привод буровой редуктор деталь
Выбираем в качестве материала вала легированная сталь Сталь 38Х2Н2МА, тогда sВ=780 МПа
Определим s-1 и t-1:
Для определения суммарного момента МS, моментов сопротивления изгибу Wи и крутящего WK необходимо выбрать опасные сечения.
Определим значения изгибающих моментов в вертикальной и горизонтальной плоскостях, а также суммарный изгибающий момент для опасных сечений и построим эпюры.
Рис.8
При рассмотрении рис. 8. выбираем в качестве опасного сечения сечение А-А .
- Сечение А-А, так как есть крутящий момент, большой по значению суммарный изгибающий момент и есть концентратор напряжений в виде галтели.
а) в вертикальной плоскости:
б) в горизонтальной плоскости:
Момент сопротивления изгибу
МПа,
,
КV=0,94; ys=0,2; yt=0,1; КsА=1,85; КtА=1,80; КdsА=0,835; КdtА=0,715;
Подставим полученные значения в формулы:
Полученные значения подставим в формулу (3.2):
Условие выполняется, следовательно, окончательно выбираем Сталь 38Х2Н2МА
3.5 Расчет вала на жесткость
Вал, рассчитанный из условий динамической прочности, может не обеспечивать нормальной к определению прогибов , углов наклона оси вала и к сопоставлению их с допускаемыми работы зубчатых колес и подшипников, если под действием передаваемых усилий он будет чрезмерно деформироваться.
Расчет сводится. Допускаемый прогиб вала не должен превышать 0.0001-0.0005 расстояния между опорами или под зубчатыми колесами 0.01-0.03 модуля в см. Углы наклона оси вала в опорах не должны превышать 0.001 радиана при зубчатых колесах; для конических роликоподшипников 0.005 радиана.
и берутся по графику (рис 4,5)
-угол наклона си вала
y- прогиб вала
и -коэффициенты, учитывающие связь между точками приложения силы и точкой,в которой определяют деформацию.
3.6 Расчет подшипников
При выборе типа и размера шарико- и роликопдшипников учитывают следующие факторы
1.Величену и направление нагрузки(радиальная осевая,комбинированная)
2.Характер нагрузки(постоянная, переменная, ударная)
3.Необходимая долговечность
4.Окружающая среда
5.Особые требования к подшипнику, предъявляемые конструкцией узла машины или механизма.
Следует отдавать предпочтение подшипникам класса 0 и 6 по сравнению с подшипниками более высоких классов.
Подшипники выбираются в следующем порядке:
1.Намечается тип подшипника, исходя из условий эксплуатации и конструкции конкретного подшипникового узла
2.Определяется типоразмер подшипника в зависимости от величины и направления действующих нагрузок, частоты вращения и требуемого срока службы
3.Назначают класс точности подшипника с учетом требований к точности вращения узла.
Тихоходный вал.
Расчет динамической грузоподъемности.
Z- число тел качения в подшипнике.
С- динамическая грузоподъемность подшипника.
Р- эквивалентная динамическая нагрузка.
X,Y-коэффициенты радиальной и осевой нагрузки
e- коэффициент, учитывающий соотношение осевой и радиальной нагрузки.
-коэффициент безопасности.
Для кратковременных перегрузок до 150% нормальной нагрузки, принимается коэффициент равный 1.3-1.8.Прими =1.5
-коэффициент, учитывающий температуру работы подшипника.
Для =1.05
номинальный угол контакта,равный углу между линией действия результирующей нагрузки на тело качения и плоскостью, перпендикулярной оси подшипника.
L- долговечность подшипника, млн.оборотов.
Lh-долговечность подшипника, ч.
D-номинальный наружный диаметр подшипника
- постоянная по величине и направлению радиальная нагрузка
p-степенной показатель,для шариковых подшипников p=3,для роликовых p=10/3.
Подшипник 7210.
Подшипник 7610
Расчет динамической грузоподъемности
Статическая грузоподъемность
i-число рядов тел вращения
D- номинальный наружный диметр подшипника, мм.
- фактическая длина контакта ролика с кольцом, имеющим наименьшую протяженность контакта(длина ролика без фасок), мм
номинальный угол контакта, равный углу между линией действия результирующей нагрузки на тело качения и плоскостью, перпендикулярной оси подшипника.
Со- статическая грузоподъемность подшипника.
Р- эквивалентная статическая нагрузка.
X,Y-коэффициенты радиальной и осевой нагрузки
Подшипник 7215
Расчет динамической грузоподъемности
Статическая грузоподъемность
Промежуточный вал
Подшипник 7615
Расчет динамической грузоподъемности
Подшипник 7618
Расчет динамической грузоподъемности
Статическая грузоподъемность
Упорный подшипник
Подшипник №4244924 ГОСТ 4657-82
Быстроходный вал: 7215 и 7215
Промежуточный вал:7618 и 7618
3.7 Расчет шлицевых соединений
Основными критериями работоспособности шлицевых соединений являются сопротивления рабочих поверхностей смятию и изнашиванию.
Смятие и изнашивание рабочих поверхностей связаны с действующими на контактирующих поверхностях напряжений
M-расчетный вращающий момент (Нм)
- коэффициент неравномерности распределения нагрузки между зубьями
- средний диметр соединения мм
- рабочая длина соединения мм
-площадь всех боковых поверхностей зубьев с одной стороны
- допускаемое напряжение на смятие
=0.75
, наружный диаметр зубьев вала и диметр отверстия шлицевой втулки
-размер фаски
-радиус закругления
Выберем прямобочное соединение, средней серии 8х32х38
Выберем прямобочное соединение, тяжелой серии 10х32х40
3.8 Расчет на прочность зубчатых цилиндрических передач
исходные данные и обозначения | расчет на выносливость | |
число зубьев Z1 | шестерня | 13 |
Z2 | колесо | 38 |
Модуль m | 10 | |
угол наклона |
15 | |
коэффициент смещения |
шестерня | 0,15 |
|
колесо | 0,24 |
рабочая ширина венца |
120 | |
передаточное число u | 2 92 | |
межосевое расстояние |
255 | |
начальный диаметр |
шестерня | 114.57 |
|
колесо | 363.32 |
Диметр вершин зубьев |
шестерня | 154.35 |
|
колесо | 403.32 |
коэффициент торцевого перекрытия |
1.67 | |
составляющая коэффициента торцевого перекрытия |
шестерня | 0.81 |
|
колесо | 0.86 |
коэффициент осевого перекрытия |
0,989 | |
степень точности передачи по нормам плавности | 7 | |
параметры шероховатости | Ra=2.5 | |
марка стали | шестерня | |
колесо | ||
окружная скорость | ||
марка стали | ||
способ упрочняющей обработки | шестерня | нитроцементация |
колесо | нитроцементация | |
толщина упрочненногог слоя | шестерня | 1,2-1,4 |
колесо | 1,2-1,4 | |
твердость поверхности зуба | шестерня | HRC 60 |
колесо | HRC 60 | |
предел текучести материала. | шестерня | |
колесо |
-окружной модуль зубьев
-угол наклона линии зуба
3.8.1 Расчет на контактную выносливость
Расчет предназначен для предотвращения усталостного выкрашивания активных (рабочих) поверхностей зубьев. Расчетное контактное напряжение в полюсе зацепления:
Расчетное значение может быть выражено через межосевое расстояние и крутящий момент.
коэффициент, учитывающий форму сопряженных поверхностей зубьев.
-коэффициент, учитывающий механические свойства материалов сопряженных зубчатых колес.
-коэффициент, учитывающий суммарную длину контактных линий.
-коэффициент, учитывающий распределение нагрузки между зуьями.
-коэффициент, учитывающий распределение нагрузки по ширине венца.
-коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении.
-удельная окружная динамическая нагрузка.
-динамическая добавка.
-удельная расчетная окружная сила.
-исходная расчетная окружная сила
=1.51 (гр. 43 , стр. 378)
=86.9 для стальных колес
=0.8
-коэффициент торцевого перекрытия