Анализ и синтез механизмов технологического оборудования машиностроения
Размещено на /
Минобрнауки россии
Пензенская государственная технологическая академия
ПГТА
Факультет «Институт промышленных технологий»
Кафедра теоретической и прикладной механики
Теория механизмов и машин
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовому проекту на тему:
Анализ и синтез механизмов технологического оборудования машиностроения
ПГТА 2. 151001. 141-9 ПЗ
Выполнил студент группы 08М1
Хохлов М.А.
Руководитель проекта:
Потемкин А.Н.
2010г.
ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ
Кинематическая схема механизма представлена на рисунке 1.
Длина кривошипа: OA = 0,05 м;
Длина шатуна: AB = 022 м;
Длина кулисы: ВС = 0,22 м;
OC = 0,31 м;
y = 0,15 м;
Угловая скорость двигателя: ωd = 286 рад/с.
Массы звеньев:
m1 = 12 кг;
m2 = 15 кг;
m3 = 19 кг;
m5 = 21 кг.
Моменты инерции звеньев:
Сила сопротивления Fc=1,4кН.
Числа зубьев зубчатых колес: Z1= 12, Z2= 30,
модуль зубчатой передачи: m = 3 мм.
Рисунок 1 – Схема механизма
Оглавление
Исходные данные для проектирования
Оглавление
1. Синтез, структурное и кинематическое исследование механизма
Описание схемы механизма
Структурное исследование механизма
1.3 Кинематическое исследование механизма
1.3.1 Построение кинематической схемы механизма
1.3.2 Построение планов скоростей
1.3.3 Определение угловых скоростей звеньев
1.3.4 Построение плана ускорений
1.3.5 Определение угловых ускорений звеньев
2. Силовой (кинетостатический) расчет механизма
2.1 Определение реакций в кинематических парах
2.2 Силовой расчет ведущего звена
2.3 Силовой расчет ведущего звена методом Н.Е. Жуковского
3. Синтез зубчатого зацепления
3.1 Определение геометрических параметров пары цилиндрических прямозубых эвольвентных зубчатых колес
3.2 Построение картины зацепления пары зубчатых колес
4. Синтез кулачкового механизма
Литература
1. Синтез, структурное и кинематическое исследование механизма
Описание схемы механизма
Кинематическая схема механизма представлена на рисунке 1.
Звено 1 совершает полный оборот вокруг оси, проходящей через точку O. Звенья 2 совершает сложные движения в плоскости. Звено 3 совершает качательное движение. Звено 5 совершает поступательное движение.
Структурное исследование механизма
Так как рассматриваемый механизм является плоским механизмом, то степень подвижности определяется по формуле П.Л. Чебышева:
где n – число подвижных звеньев,
– число кинематических пар пятого и четвертого классов соответственно.
В рассматриваемом механизме одно ведущее звено.
Определяем класс и порядок механизма.
В таблице 1 показано разложение механизма на группы Ассура. В таблице 2 приведены обозначения кинематических пар, указаны их вид, порядок и класс.
Таблица 1
№ звеньев | Схема структурной группы и механизма I класса | Класс | Порядок | Вид |
5-4 | II | 2 | 4 | |
3-2 | II | 2 | 1 | |
0-1 | I | - | - |
Таблица 2
Обозначение КП | Звенья, составляющие КП | Характеристика КП |
O | 0-1 | Вращательная низшая, 5 класс |
A | 1-2 | Вращательная низшая, 5 класс |
B | 2-3 | Вращательная низшая, 5 класс |
C | 0-3 | Вращательная низшая, 5 класс |
D3 | 3-4 | Вращательная низшая, 5 класс |
D5 | 4-5 | Поступательная низшая, 5 класс |
E | 0-5 | Поступательная низшая, 5 класс |
Формула строения механизма:
Рассматриваемый механизм является механизмом класса.
1.3 Кинематическое исследование механизма
1.3.1 Построение кинематической схемы механизма
Масштабный коэффициент кинематической схемы определяется по формуле:
Выполняем построение кинематической схемы механизма в принятом масштабе длин по заданным размерам звеньев и параметров механизма.
Разбиваем траекторию движения кривошипа OA на 12 частей. В качестве нулевого положения механизма (от которого начинается отсчет движения) принимаем одно из крайних положений. С этого положения начинается рабочий ход механизма.
Вычерчиваем траектории движения центров тяжести звеньев 2 и 4 (точки , и )
Одно из положений звеньев механизма, положение, для которого выполняется силовой расчет, обводится более яркими линиями.
1.3.2 Построение планов скоростей
Определяем угловую скорость вращения кривошипа:
Определяем скорость точки A кривошипа OA:
.
Вектор скорости точки A перпендикулярен ведущему звену и направлен в сторону его вращения. Откладываем его из полюса в виде отрезка Ра длиной 87.5 мм в масштабе:
Определяем скорости других точек механизма.
Для определения скорости точки B составляем систему векторных уравнений:
.
В этой системе векторных уравнений известны по модулю и направлению векторы абсолютных скоростей и (скорость была определена выше, а скорость равна нулю, т.к. точка принадлежит стойке, а, следовательно, неподвижна). Векторы относительных скоростей известны только по направлению. Вектор скорости направлен перпендикулярно звену AB, вектор скорости направлен перпендикулярно звену ВС.
Построения выполняем в следующей последовательности: В соответствии с первым векторным уравнением проводим вектор pa перпендикулярно кривошипу OA в сторону его вращения. Через конец этого вектора проводим прямую, перпендикулярную звену AB (это линия вектора ). В соответствии со вторым векторным уравнением вектор обращается в точку, которую мы и откладываем в полюсе плана. Из этой точки, как из конца вектора, проводим прямую, параллельную направляющей. Точка пересечения ее с ранее проведенной прямой дает нам конец вектора абсолютной скорости точки B . Начало его лежит в полюсе плана скоростей.
Таким образом, отрезок pb в масштабе определит значение линейной скорости точки B в каждом из положений звеньев механизма.
Аналогично строим план скоростей для точки D5. Система векторных уравнений при этом имеет вид:
Скорость точки D3 определяется из пропорции:
,
Линейные скорости центров тяжести 2 и 3 звеньев определяются из пропорций:
откуда получаем отрезки плана скоростей, которые с учетом масштаба дают значения скоростей центров тяжести.
Результаты расчетов сводим в таблицу 3.
Таблица 3
Номер положения звеньев механизма | Значение скоростей точек механизма, м/c | ||||||
VB | VBA | VD3 | VD5 | VD5D3 | VS2 | VS3 | |
0 | 0 | 1,50 | 1.06 | 1.09 | 0.4 | ||
1 | 1.04 | 1.425 | 1,05 | 1,075 | 0,225 | ||
3 | 1.475 | 0,21 | 1.04 | 1.025 | 0,2 | 1.03 | 1.475 |
5 | 0,66 | 1,41 | 1,06 | 0.9 | 0,26 | ||
7 | 0,84 | 1.11 | 1.05 | 1.08 | 0.21 | ||
9 | 1,475 | 0,06 | 1.04 | 1.04 | 0,04 | ||
11 | 0.9 | 2.2 | 1.375 | 0.01 | 1.375 |
1.3.3 Определение угловых скоростей звеньев
Угловая скорость первого звена была определена выше.
Определяем угловые скорости звеньев AB и CD по формулам:
Направление угловых скоростей определяются векторами относительных скоростей , приложенными в соответствующие точки 2 и 3 звеньев.
1.3.4 Построение плана ускорений
Построение плана ускорений выполняем для 3 и 9 положений звеньев механизма.
Ускорение точки A определяется по формуле:
Вектор ускорения точки A направлен параллельно ведущему звену 1 к центру его вращения, т.к. угловая скорость есть величина постоянная, угловое ускорение звена 1 равно нулю, тангенциальная составляющая ускорения равна нулю, и ускорение - нормальное ускорение.
Масштабный коэффициент для построения плана ускорений определяется по формуле:
Для определения ускорений точек B, C и D составляем системы векторных уравнений:
,
.
Рассмотрим вектора в каждой системе уравнений.
Нормальные ускорения определяются по формулам:
Вектор нормального ускорения направлен параллельно соответствующему звену к центру его вращения.
Кориолисово ускорение равно нулю, т.к. стойка неподвижна. Ускорение также равно нулю, т.к. угловая скорость направляющей равна нулю.
Построение плана ускорений выполняем в следующей последовательности: из полюса откладываем вектор ускорения точки A в виде отрезка длиной 251 мм. Вектор нормального ускорения откладываем из конца вектора ускорения точки A. Вектор ускорения точки С (оно равно нулю) откладываем в полюсе. Вектор нормального ускорения откладываем из полюса как из конца вектора ускорения точки С. Через концы векторов ускорений и проводим направления векторов ускорений и . Точка пересечения этих линий даст нам вектор абсолютного ускорения точки B.
Аналогично строим план по второму и третьему уравнениям
Ускорение точки D3 определяем из пропорции:
, .
Результаты расчетов сводим в таблицу 4.
Таблица 4
Значение ускорений точек механизма, м/c2 | |||||||||
№ | |||||||||
3 | 15.6 | 10.8 | 6.3 | 54.9 | 55.2 | 12.6 | 6 | 19.5 | 3.3 |
9 | 12.6 | 8.7 | 5,1 | 35.7 | 37.6 | 8.7 | 6.9 | 27.3 | 2.7 |
1.3.5 Определение угловых ускорений звеньев
Угловое ускорение первого звена равно нулю, т.к. кривошип вращается равномерно.
Угловые ускорения звеньев AB и CD для третьего положения звеньев механизма определяются по формулам:
2. Силовой (кинетостатический) расчет механизма
2.1 Определение реакций в кинематических парах
Исследование механизма производим для 3-его положения звеньев механизма. Для этого вычерчиваем кинематическую схему механизма в заданном положении и расчленяем ее на группы Ассура.
Масштабный коэффициент кинематической схемы определяется по формуле:
Определяем силы тяжести, действующие на механизм:
G1=m1*g=117.72 (H)
G2=m2*g=14712(H)
G3=m3*g=186.39(H)
G5=m5*g=206.01(H)
Определяем силы инерции, возникающие при движении звеньев механизма:
Определяем инерционные моменты:
Определяем реакции в кинематических парах Ассура. Начинаем с последней группы, состоящей из звеньев 4 и 5.
Приложив взамен отброшенных звеньев 3 и 0 реакции
и ,
рассматриваем группу в равновесии под действием сил.
Уравнение равновесия имеет вид:
,
В этом уравнении неизвестные величины: , .
Строим план сил в масштабе:
Последовательно откладывая векторы из уравнения равновесия группы, строим силовой многоугольник, который замыкаем прямыми линиями в направлениях векторов и .
Полные реакции определяются из плана сил:
Реакция во внутренней кинематической паре определяется из условия равновесия звена 4 под действием сил по уравнению:
Плечо действия силы определим из уравнения:
Отсюда
Величины сил, действующих на звенья механизма, а также длины векторов на плане сил, с учетом выбранного масштаба, представлены в таблице 5.
Таблица 5
Обозначение силы | Величина силы, Н | Длина вектора на плане сил, мм | Точки на плане сил |
1210 | 121 | 4-1 | |
250 | 25 | 5-1 | |
190 | 19 | 1-2 | |
1400 | 140 | 3-4 | |
1210 | 121 | 3-7 | |
200 | 20 | 2-3 |
Произведя аналогичные рассуждения и выкладки, определяем реакции в кинематических парах структурной группы Ассура, состоящей из звеньев 2 и 3.
Уравнение равновесия этой группы имеет вид:
,
Уравнение равновесия звена 2 имеет вид:
Из этого уравнения определяем значение тангенциальной составляющей силы реакции: