Механизм поперечно-строгального станка
Кафедра «Основы проектирования машин»
Тема
Механизм поперечно-строгального станка
Содержание
1 СИНТЕЗ РЫЧАЖНОГО МЕХАНИЗМА
1.1 Структурный анализ механизма
1.2 Определение недостающих размеров
1.3 Определение скоростей точек механизма
1.4Определение ускорений точек механизма
1.5 Диаграмма движения выходного звена
1.6 Определение угловых скоростей и ускорений
1.7 Определение ускорений центров масс звеньев механизма
1.8 Аналитический метод расчёта
2 СИЛОВОЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА
2.1 Определение сил инерции
2.2 Расчёт диады 4-5
2.3 Расчёт диады 2-3
2.4 Расчет кривошипа
2.5 Определение уравновешенной силы методом Жуковского
2.6 Определение мощностей
2.7 Определение кинетической энергии и приведённого момента инерции механизма
3 ГЕОМЕТРИЧЕСКИЙ РАСЧЁТ ЗУБЧАТОЙ ПЕРЕДАЧИ, ПРОЕКТИРОВАНИЕ ПЛАНЕТАРНОГО МЕХАНИЗМА
3.1 Геометрический расчёт зубчатой передачи
3.2 Определение передаточного отношения планетарной ступени и подбор чисел зубьев колёс
3.3 Определение частот вращения зубчатых колёс аналитическим методом
4 СИНТЕЗ И АНАЛИЗ КУЛАЧКОВОГО МЕХАНИЗМА
4.1 Построение кинематических диаграмм и определение масштабных коэффициентов
4.2 Построение профиля кулачка
4.3 Определение максимальной линейной скорости и ускорения толкателя
5 СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ
Введение
Поперечно-строгальный станок предназначен для строгания плоских поверхностей.
Привод станка состоит из простой зубчатой передачи и планетарной передачи, который соединен с электромотором.
Резание металла осуществляется резцом, установленным в резцовой головке, закреплённой на ползунке, при рабочем ходе ползунка.
Кривошип жёстко соединен с зубчатым колесом. Во время перебега в конце холостого хода осуществляется перемещение стола с заготовкой на величину подачи с помощью храпового механизма и кулачкового механизма, кулачёк которого жестко соединен с зубчатым колесом.
При проектировании профиля кулачка необходимо обеспечить заданный закон движения толкателя.
1 Синтез и анализ рычажного механизма
Исходные данные: lo1o2=460мм ; H=460мм ; nкр=70 мин-1 ; К=1,5;
Структурный анализ механизма :
Степень подвижности механизма:
;
где к=5 – число подвижных звеньев,
p1=7 – число одноподвижных кинематических пар,
p2=0 – число двухподвижных кинематических пар.
Разложение механизма на структурные группы Асура
Формула строения механизма:
I(0;1)→ II2(2;3)→II2(4;5)
Механизм II класса , второго порядка.
Определение недостающих размеров:
Угол размаха кулисы:
Длина кривошипа:
Длина кулисы:
Масштабный коэффициент построения схемы :
Строим 12 планов механизма , приняв за начало отсчета крайнее положение, соответствующее началу рабочего хода механизма.
1.3 Определение скоростей точек механизма.
Скорость точки А кривошипа определяем по формуле :
,
где
,
где nкр=70мин-1
Планы скоростей строим в масштабе :
Скорость точки А’ находим графически , решая совместно систему :
На плане Рvа’=30мм . Абсолютная величина скорости точки А’ :
Скорость точки В находим из соотношения :
,
откуда
Абсолютная величина скорости точки В :
Скорость точки С определим, решая совместно систему :
На плане Рvс=34мм. Абсолютная величина скорости точки С :
,
на плане
=14мм
Для всех остальных положений скорости определяем аналогично.
Полученные результаты сводим в таблицу 1.1
Таблица 1.1.- Значения скоростей
Скоростим/с | Положения механизма | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
va | 1.03 | 1,03 | 1,03 | 1,03 | 1,03 | 1,03 | 1,03 | 1,03 | 1,03 | 1,03 | 1,03 | 1,03 |
va’ | 0,6 | 1,02 | 1,2 | 1,26 | 1,1 | 0,7 | 0.16 | 0,56 | 1.1 | 1,24 | 0,64 | 1,32 |
vb | 0,88 | 1,32 | 1,5 | 1,6 | 1,43 | 0,92 | 0,26 | 1,18 | 2,5 | 2,8 | 1,3 | 0 |
vc | 0,68 | 1,24 | 1,5 | 1,6 | 1,48 | 0,92 | 0,32 | 1,4 | 2,54 | 2,8 | 1 | 0 |
Определение ускорений точек механизма.
Пересчетный коэффициент С :
Ускорение точки А конца кривошипа определяем по формуле:
Ускорение аа направлено по кривошипу к центру вращения О1.
Выбираем масштабный коэффициент ускорений:
На плане ускорений изображаем ускорение точки А отрезком Раа=55мм
Ускорение точки А’ определяем, решая совместно систему:
Кориолисово ускорение:
;
По свойству подобия определяем ускорение точки В :
;
Система уравнений для определения ускорений точки С:
,
откуда
Ускорения всех точек найдены. Ускорения для остальных положений механизма находим аналогично . Значения ускорений сводим в таблицу
Таблица 1.2. – Значения ускорений
Ускорения м/с2 | Положения механизма | ||||||
1 | 3 | 5 | 7 | 9 | 11 | 12 | |
аа | 7,5 | 7,5 | 7,5 | 7,5 | 7,5 | 7,5 | 7,5 |
аА’ | 3,8 | 2,5 | 2,6 | 6,4 | 8,5 | 10,3 | 7,5 |
ab | 5,7 | 3,4 | 3,8 | 10,5 | 19,3 | 21,4 | 11 |
ac | 5,8 | 2,1 | 1,7 | 10,5 | 16,1 | 20,8 | 11,7 |
1.5 Диаграммы движения выходного звена.
Диаграмму перемещения строим , используя полученную из S-t плана механизма траекторию движения точки С.
Диаграммы скорости V-t и ускорений A-t строим из полученных 12 планов скоростей и 7 планов ускорений.
Масштабные коэффициенты диаграмм:
,
где хt=180 мм
Определение угловых скоростей и ускорений
Угловые скорости и ускорения звеньев механизма определяются для первого положения
Определение ускорений центров масс звеньев механизма
Ускорение центров масс звеньев определяем из планов ускорений:
1.8 Аналитический метод расчета
Расчет ведется для первого положения кулисы:
В проекциях на координатные оси:
Поделим второе уравнение на первое:
Передаточное отношение U31:
Передаточная функция ускорений U’31:
Угловая скорость кулисы:
Угловое ускорение кулисы:
Уравнение замкнутости верхнего контура в проекциях на оси:
(1)
Решая совместно два уравнения находим sinφ4:
. Дифференцируем уравнения (1) по параметру φ1:
(2)
где
и
- соответствующие
передаточные
отношения.
Передаточное отношение U43 и угловая скорость ω4:
Передаточное отношение U53:
Дифференцируем уравнение по параметру φ3:
(3)
где
и
Из второго уравнения системы (3) определяем U’43:
Из первого уравнения системы (3) находим U’53:
Скорость и ускорение точки С выходного звена:
1.9 Расчет на ЭВМ
Program kulise1;
User crt;
Const
h=0.;
l0=0.456;
l1=0.143;
shag=30;
w1=7.33;
a=0.270;
var
f1, w3, e3, vb, ab, u53, u53_, u31_:real;
cosf3, tgf3, sinf3: real;
begin
write (`,Введите угол в градусах`);
read(f1);
repeat
w3:=w1*((sqr(l1)+l0*l1*sin(f1))/(sqr(l1)+sqr(l0)+2*l0*l1-*sin(f1)));
u31_;=l0*l1*cos(n)*(sqr(l0)-sqr(l1))/(sqr(sqr(l1)+sqr(l0)+2*l0*l1*sin(f1)));
E3:=sqr(w1)*u31_;
cosf3:=sqrt((sqr(l1)*sqr(cos(f1)))/(sqr(l1)+sqr(l0)+2*l0*l1*sin(f1)));
tgf3:=(l0+l1*sin(f1))/(l1*cos(f1));
sinf3:=tgf3/sqrt(1+sqr(tgf3));
u53:=-(a/(sqr(sinf3)));
u53_:=(2*a*cosf3)/(sqr(sinf3)*sinf3);
Ab:=sqr(w3)*u53_+E3*u53;
Writeln(`’Скорость Vb=`, Vb=`,Vb:3:4);
Writeln(`’Ускорение Ab=`, Ab=`,Vb:3:4);
Decay(10000)
Writein;
F1:=F1+Shag;
Until F1>=
End.
Положения | Скорости | Ускорения |
0 | 0 | 76,6 |
1 | 35,963 | 49,8936 |
2 | 63,5161 | 30,9 |
3 | 80,1509 | 18,5649 |
4 | 86,5 | 0 |
5 | 85,3494 | -7,3299 |
6 | 77,2378 | -14,32 |
7 | 56,7787 | -63,818 |
8 | 0 | 200,7 |
9 | -132,198 | -273,396 |
10 | -260 | 0 |
11 | -94,5398 | 272,2544 |
Планы скоростей и ускорений:
Рис. 3 – Диаграмма скоростей
Рис. 4 – Диаграмма ускорений
2 Силовой анализ механизма
Исходные данные:
вес кулисы
кг;
вес шатуна
кг;
вес ползуна
кг.
2.1 Силы тяжести и силы инерции
Силы тяжести:
Н
Н
Н
Силы инерции:
Н
Н
Н
Н
м
мм
2.2 Расчет диады 4-5
Для расчета этой диады изобразим ее со всеми приложенными к ней силами: силами тяжести, полезного сопротивления и реакциями.
Эти реакции в поступательных парах известны по направлению, но неизвестны по модулю. Определяем с помощью плана сил. Составим уравнение равновесия диады 4-5.
Строим план сил диады в масштабе сил
Уравнение содержит три неизвестных, поэтому составляем дополнительное уравнение равновесия в форме моментов сил относительно точки С.
Рассчитаем вектора сил
Строим план сил по уравнению сил, в том порядке как силы стояли в уравнении.
Значения сил из плана сил
Для рассмотрения внутренних реакций в диаде 4-5 необходимо рассмотреть равновесие одного звена, звена 4.
2.3 Расчет диады 2-3
Изобразим диаду
со всеми приложенными
к ней силами.
В точках А и О2
взамен отброшенных
связей прикладываем
реакции
и
.
В точке В прикладываем
ранее найденную
реакцию
.
Составляем
уравнение
равновесия
диады 2-3.
Плечи измеряем
на плане. Теперь
в уравнении
сил две неизвестных,
поэтому строим
план сил и определяем
реакцию,
как замыкающий
вектор.
Строим план
диады в масштабе
сил
.
Значения сил
из плана сил.
2.4 Расчет кривошипа
Изобразим
кривошип с
приложенными
к нему силами
и уравновешивающей
силой
,
эквивалентной
силе действия
на кривошип
со стороны
двигателя.
Действие отброшенных
связей учитываем
вводя реакции
и
.
Определяем
уравновешивающую
силу, считая,
что она приложена
в точке А кривошипа,
перпендикулярно
ему. Составляем
уравнение
равновесия
кривошипа.