Xreferat.com » Рефераты по промышленности и производству » Привод к ленточному конвейеру

Привод к ленточному конвейеру

МГТУ «МАМИ»


Кафедра «Детали машин»


Курсовая работа

ПРИВОД К ЛЕНТОЧНОМУ КОНВЕЙЕРУ


Техническое задание на курсовой проект


Спроектировать привод к ленточному конвейеру для штучных грузов.


Привод к ленточному конвейеру

Кинематическая схема привода. Режим нагружения


Техническая характеристика привода:

Натяжение ветвей

конвейера: F1, кН: 5,9.

F2, кН: 2,1.

Скорость ленты: V, м/с: 1.

Диаметр барабана: D, м: 0,5

Ширина барабана: B, м: 0,8

Высота центра

приводного вала Н, м: 0,8.

Ресурс работы привода Lh, тыс. ч: 16.


Содержание


Введение

1 Кинематический расчет привода

2 Выбор материалов шестерен и колес и определение допускаемых напряжений

3 Расчет первой ступени редуктора

4 Расчет второй ступени редуктора

5 Основные размеры корпуса и крышки редуктора

6 Расчет ременной передачи

7 Проектный расчет валов, подбор подшипников

8 Расчет быстроходного вала и расчет подшипников для него

9 Расчет промежуточного вала и расчет подшипников для него

10 Расчет тихоходного вала и расчет подшипников для него

11 Расчет приводного вала и расчет подшипников для него

12 Смазка

13 Проверка прочности шпоночных соединений

14 Выбор муфты

15 Сборка редуктора

Список использованной литературы

Приложение: спецификация редуктора


Введение


Редуктор является неотъемлемой составной частью современного оборудования. Разнообразие требований, предъявляемых к редукторам, предопределяет широкий ассортимент их типов, типоразмеров, конструктивных исполнений, передаточных отношений и схем сборки.

При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механики, машиностроительного черчения и т. д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам.

При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требуемая долговечность, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы.

Из всех видов передач зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. Зубчатые передачи в сравнении с другими механическими передачами обладают большой надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач; они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт.

К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.

Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предшествующий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению.

Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и многопоточные и т. д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технологические требования, предпочитаемое количество изделий.

При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения - 85%, в дорожных машинах - 75%, в автомобилях - 10% и т. д.

Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.

Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением.

Проектируемый привод предназначен для передачи вращательного движения от электродвигателя к приводному валу конвейера. В состав данного привода входят:

Электродвигатель.

Ременная передача.

Редуктор коническо-цилиндрический.

Муфта.

Рассмотрим более подробно составные части привода. Вращательное движение от электродвигателя через ременную передачу передается на быстроходный вал редуктора. В качестве электродвигателя широкое применение получили асинхронные двигатели. В этих двигателях значительное изменение нагрузки вызывает несущественное изменение частоты вращения ротора.

Коническо-цилиндрический редуктор передает вращательное движение от двигателя к приводному валу, при этом изменяя угловую скорость и крутящий момент по величине и направлению. Изменение направления связано с наличием в редукторе конической передачи.

Муфта передает вращательное движение от тихоходного вала редуктора к приводному валу конвейера. Кроме передачи вращательного движения муфта также компенсирует несоосность тихоходного вала редуктора и приводного вала конвейера. Предусмотрим в этой муфте предохранительное устройство для предотвращения поломки привода при заклинивании исполнительного элемента.


1 Кинематический расчет привода


Выбор электродвигателя

Расчет ведем по [1].Общий КПД привода:

η = ηред · ηм · ηрем · ηпηред – КПД редуктора.

ηред = ηцп · ηкп · ηп3ηцп = 0,96…0,98; принимаем ηцп = 0,97 – КПД закрытой цилиндрической передачи;

ηкп = 0,95…0,97; принимаем ηкп = 0,96 – КПД закрытой конической передачи;

ηп = 0,99 – КПД пары подшипников качения.

ηред = 0,97 · 0,96 · 0,993 = 0,9ηм = 0,98 – КПД муфты.

ηрем = 0,94…0,96 – ременная передача;

принимаем ηрем = 0,95.η = 0,9 · 0,98 · 0,95 · 0,99 = 0,83

Требуемая мощность двигателя:

Ртр = Рвых/ η = 3,8 / 0,83 = 4,6 кВт.Рвых – мощность на валу барабана.

Рвых = Ft · V = 3,8 · 103 · 1 = 3800 Вт = 3,8 кВт.

Ft = F1 – F2 = 5,9 – 2,1 = 3,8 кН – окружная сила на барабане.

Частота вращения барабана [3]. nвых = Привод к ленточному конвейеру = Привод к ленточному конвейеру = 38 об/мин.nвых – частота вращения барабана.

V = 1м/с – скорость ленты.

D = 0,5 м – диаметр барабана.

Выбираем электродвигатель по ГОСТ 16264.1–85 с запасом мощности: АИР132S6

Pдв = 5,5 кВт; nдв = 950 об/мин.Передаточное число привода [4].U = Uред · Uрем = nдв / nвых = 950/38 = 25Uред – передаточное число редуктора;

Uрем – передаточное число ременной передачи;

Примем: Uред = 6; Uрем = 4,17.Uред = U1 · U2 ,

где:U1 – передаточное число конической передачи;

U2 – передаточное число цилиндрической передачи.По таблице 1.2 из [1] примем рекомендуемые значения передаточных чисел:

U1 = 2;

U2 = 3.

Определение частот вращения и вращающих моментов на валах

Частота вращения валов:nдв = 950 об/мин;

n1 = nдв / Uрем = 950 / 4,17 = 227,8 об/мин;

n2 = n1 / U1 = 227,8 / 2 = 113,9 об/мин;

n3 = nвых = 38 об/мин.Угловые скорости валов:ω1 = πn1 / 30 = 3,14 · 227,8 / 30 = 23,8 рад/с;

ω2 = πn2 / 30 = 3,14 · 113,9 / 30 = 11,9 рад/с;

ω3 = ωвых = πn3 / 30 = 3,14 · 38 / 30 = 4 рад/с;Мощности на валах:Рдв = 5.5 кВт;

Р1 = Рдв · ηрем · ηп = 5.5 · 0,95 · 0,99 = 5,2 кВт;

Р2 = Р1 · ηкп · ηп = 5,2 · 0,96 · 0,99 = 4,9 кВт;

Р3 = Р2 · ηцп · ηп = 4,9 · 0,97 · 0,99 = 4,7 кВт.

Рвых = Р3 · ηм · ηп = 4,7 · 0,98 · 0,99 = 4,6 кВт.

Вращающие моменты на валах:М1 = Р1 / ω 1 = 5,2 / 23,8 = 0,22 кН·м = 220 Н·м;

М2 = Р2 / ω 2 = 4,9 / 11,9 = 0,38 кН·м = 380 Н·м;

М3 = Р3 / ω 3 = 4,7 / 4 = 1,18 кН·м = 1180 Н·м.

Мвых = Рвых / ω 3 = 4,6 / 4 = 1,15 кН·м = 1150 Н·м.


2 Выбор материалов шестерен и колес и определение допускаемых

напряжений


Материал колес – сталь 40Х ГОСТ 4543-71 улучшенная до твердости 180-350 НВ с пределом текучести σТ = 540 МПа [2].

Материал шестерен – сталь 40Х ГОСТ 4543-71 со сквозной закалкой при нагреве ТВЧ до твердости 48…50 HRC [2].

Расчет по средней твердости [4]: шестерни – 49 HRC, колеса 265 НВ.

Степень точности по контакту.

Ожидаемая окружная скорость:


V = (n1Привод к ленточному конвейеру) / 2000 = 227,8Привод к ленточному конвейеру/2000 = 0,69 м/с


Принимаем восьмую степень точности зубчатых колес редуктора по ГОСТ 1643-81.

Принимаем коэффициент ширины ψd = 0,8, в соответствии с твердостью колеса – НВ2 < 350.

Принимаем коэффициент внешней динамической нагрузки КА = 1, поскольку блок нагружения задан с учетом внешней динамической нагрузки.

Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий при ψd = 0,8, НВ2 < 350 равен KHβ = KFβ = 1,04 [4].

Коэффициенты режима:


μ3 = ΣПривод к ленточному конвейеру= 0,1 · 13 + 0,3 · 0,83 + 0,3 · 0,63 + 0,3 · 0,33 = 0,327

μ6 = ΣПривод к ленточному конвейеру= 0,1 · 16 + 0,3 · 0,86 + 0,3 · 0,66 + 0,3 · 0,36 = 0,193

μ9 = ΣПривод к ленточному конвейеру= 0,1 · 19 + 0,3 · 0,89 + 0,3 · 0,69 + 0,3 · 0,39 = 0,143


Допускаемые контактные напряжения при расчете на сопротивление усталости.

Суммарные числа циклов:

NΣ1 = 60n3n1Lh = 60 · 38 · 227,8 · 16000 = 8,3 · 109

NΣ2 = NΣ1/Uред = 8,3 · 109 / 6 = 1,38 · 109

Эквивалентные числа циклов:

NHE1 = NΣ1 · μ3 = 8,3 · 109 · 0,327 = 2,71 · 109

NHE2 = NHE1/Uред = 2,71 · 109 / 6 = 4,5 · 108

Базовые числа циклов:

NHG1 = 340 HRCэ3,15 + 8 · 106 = 340 · 493,15 + 8 · 106 = 8,65 · 107

NHG2 = 30 НВ2,4 = 30 · 2652,4 = 1,96 · 107

Коэффициенты долговечности.

Поскольку NHG1 < NHE1, а NHG2 < NHE2:


ZN1 = Привод к ленточному конвейеру = Привод к ленточному конвейеру = 0,917


ZN2 = Привод к ленточному конвейеру= Привод к ленточному конвейеру = 1,03


Пределы контактной выносливости по ГОСТ 2.309-73.

σНlim1 = 17HRCэ + 200 = 17 · 49 + 200 = 1033 МПа

σНlim2 = 2HВ2 + 70 = 2 · 265 + 70 = 600 МПа

Коэффициенты запаса: шестерни – SH1 = 1,1; SH2 = 1,1 [2].

Допускаемые напряжения шестерни и колеса.

[σ]H1 = ((σНlim1 · ZN1)/ SH1) · ZRZVZX = ((1033 · 0,917)/1,1) · 1 = 861 МПа

[σ]H2 = ((σНlim2 · ZN2)/ SH2) · ZRZVZX = ((600 · 1,03)/1,1) · 1 = 562 МПа,

где принято ZRZVZX = 1, так как ожидаемая скорость в зацеплении V ≤ 10 м/с.

Расчетное допускаемое напряжение.

[σ]H = 0,45([σ]H1 + [σ]H2) = 0,45(861 + 562) = 640 МПа

[σ]H = 1,25[σ]Hmin = 1,25 · 562 = 703 МПа

За расчетное принимаем меньшее: [σ]H = 640 МПа

Поскольку NHE1 > 4 · 106 и NHE2 > 4 · 106; находим:

[σ]F01 = 310 МПа; [σ]F02 = 294 МПа.

[σ]F02 < [σ]F01, поэтому принимаем: [σ]F = 294 МПа.


3 Расчет первой ступени редуктора


Исходные данные: U1 = 2; М2 = 380 Н·м; n2 = 113,9 об/мин.

Диаметр внешней делительной окружности колеса [1]:


de2 ≥ 1,75 · 104 Привод к ленточному конвейеру = 1,75 · 104 Привод к ленточному конвейеру = 0,18 м


νН = 1,13 + 0,13U1 = 1,13 + 0,13 · 2 = 1,39 – для колес c круговым зубом [1].

КНβ = Привод к ленточному конвейеру ≥ 1,2; КНβ0 = 1,9 - табл. 2.3 [1]; КНβ = 1,37

Ψd = 0,166Привод к ленточному конвейеру = 0,166Привод к ленточному конвейеру = 0,37

ТНЕ2 = КНД М2 = 0,78 · 380 = 296 Н·м

Угол делительного конуса колеса:


δ2 = arctg(U1) = arctg 2 = 63,4є; sinδ2 = sin 63,4 = 0,89


Конусное расстояние:

Re = de2 / 2sin(δ2) = 180 / 2 · 0,89 = 101,1 мм

Ширина зубчатого венца шестерни и колеса:

b = 0,285Re = 0,285 · 101,1 = 28,8 мм

Внешний торцовый модуль:


mte ≥ Привод к ленточному конвейеру

КFβ = Привод к ленточному конвейеру ≥ 1,15; КFβ0 = 1,9 - табл. 2.6 [1]; КFβ = 1,29

vF = 0,85 + 0,043U1 = 0,85 + 0,043 · 2 = 0,94 – для колес c круговым зубом [1].

ТFЕ2 = КFД M2 = 1 · 380 = 380 Н·м

mte = Привод к ленточному конвейеру = 0,004 м

Число зубьев колеса и шестерни:


z2 = de2 / mte = 180 / 4 = 45


z1 = z2 / U1 = 45 / 2 ≈ 22


Фактическое передаточное число:

U1ф = z2 / z1 = 45/22 = 2,045

Отклонение от заданного передаточного числа: 2,25% < 4%

Определим окончательные размеры колес.

Углы делительных конусов колеса и шестерни.

δ2 = arctg(U1) = arctg 2,045 = 63,9є; δ1 = 90є - δ2 = 26,1є

cos δ2 = cos 63,9є = 0,44; cos δ1 = cos 26,1є = 0,9; sin δ1 = sin 26,1° = 0,44.

Делительные диаметры:

de1 = mte z1 = 4 · 22 = 88 мм;

de2 = mte z2 = 4 · 45 = 180 мм.

Внешние диаметры:

dae1 = de1 + 1,64(1 + Xn1) mte cosδ1 = 88 + 1,64(1+0,22) 4 · 0,9 = 95,2 мм

dae2 = de2 + 1,64(1 + Xn2) mte cosδ2 = 180 + 1,64(1 – 0,22) 4 · 0,44 = 182,3 мм

Xn1 = 0,22; Xn2 = - Xn1 = - 0,22 – коэффициенты смещения, табл. 2.11 [1].

Размеры заготовок колес:

Dзаг = dе2 + 2m + 6 = 180 + 2 · 4 + 6 = 194 мм > Dпред = 125 мм

Sзаг = 8me = 8 · 4 = 32 мм ≤ Sпред = 80 мм

Заменим материал колеса на сталь 40ХН, с термообработкой улучшением, с

Dпред = 315 мм

Силы в зацеплении:


Ft = Привод к ленточному конвейеру = Привод к ленточному конвейеру = 4935 H – окружная сила в зацеплении.


dm2 = 0,857 de2 = 0,857 · 180 = 154 мм

Fr1 = Fa2 = γr Ft = 4935 · 0,088 = 434 H; γr = 0,44cosδ1 – 0,7sin δ1 = 0,088

Fa1 = Fr2 = γa Ft = 4935 · 0,824 = 4066 H; γa = 0,44sin δ1 + 0,7cosδ1 = 0,824

Напряжения изгиба в зубьях колеса.

σF2 = 1,17YF2 Привод к ленточному конвейеру KFβ KFv ≤ [σ]F2

Напряжения изгиба в зубьях шестерни.

σF1 = σF2 YF1 / YF2 ≤ [σ]F1

KFβ = 1,29

Окружная скорость в зацеплении:


V = Привод к ленточному конвейеру = 3,14 · 0,154 · 113,9 / 60 = 0,92 м/с


KFv = 1,04 – табл. 2.7 [1].

Эквивалентные числа зубьев:

zv2 = z2 / 0,55cos δ2 = 45 / 0,55 · 0,44 = 186

zv1 = z1 / 0,55cos δ1 = 22 / 0,55 · 0,9 = 44

YF1 = 3,7, YF2 = 3,6 – табл. 2.8 [1].

σF2 = 1,17 · 3,6 Привод к ленточному конвейеру 1,29 · 1,04 = 258 МПа ≤ [σ]F2 = 294 МПа

σF1 = 258 · 3,7 / 3,6 = 265 МПа ≤ [σ]F1 = 310 МПа

Условие выполняется.

Расчетное контактное напряжение:


σН = 1,9 · 106Привод к ленточному конвейеру ≤ [σ]H,


КНv = 1,01 – табл. 2.9 [1].

ТНЕ2 = КНД M2 = 0,78 · 380 = 296 Н·м

σН = 1,9 · 106Привод к ленточному конвейеру = 610 МПа ≤ [σ]H = 640 МПа,

Условие выполняется.


Расчет второй ступени редуктора


U2 = 3

Межосевое расстояние:


αω = Кα(U2 + 1) Привод к ленточному конвейеру = 430 · (3 + 1) Привод к ленточному конвейеру = 171 мм.


Кα = 430 – для косозубых передач [3].

Ψba = 0,4-0,5 – при симметричном расположении колес, берем: Ψba = 0,4.

Примем: КН = КНβ

Ψbd = 0,5Ψba (U2 + 1) = 0,5 · 0,4 · (3+1) = 0,8

По Ψbd = 0,8 и соотношений твердости материалов колеса и шестерни принимаем:

КНβ = 1,24.

Принимаем αω = 160 мм.

Модуль зацепления:

m = (0,01-0,02) αω = 1,6 – 3,2 мм, принимаем m = 2 мм.

Ширина колеса:

b2 = ψва · αω = 0,4 · 160 = 64 мм

b1 = b2 + 5 = 64 + 5 = 69 мм – ширина шестерни.

Минимальный угол наклона зубьев:

βmin = arcsinПривод к ленточному конвейеру = arcsinПривод к ленточному конвейеру = 6,28°

При β = βmin сумма чисел зубьев:


zc = z1 + z2 = (2αω/m)cos βmin = (2 · 160/2)cos 6,28°= 159


Угол наклона зубьев:

β = arccosПривод к ленточному конвейеру = arccosПривод к ленточному конвейеру = 6,4°,

при нем zc = (2 · 160/2)cos 6,4° = 159

Число зубьев колеса:

z2 = zc / (U2 + 1) = 159 / (3 + 1) ≈ 40

z1 = 159 – 40 = 119 – шестерни.

Передаточное число:

Uф = 119 / 40 = 2,98, отклонение ΔU = 0,02U - допустимо.

Диаметры делительных окружностей:

d1 = m z1 /cos β = 2 · 119 / cos 6,4° = 239 мм – шестерни;

d2 = m z2 /cos β = 2 · 40 / cos 6,4° = 80 мм – колеса.

Торцевой (окружной) модуль:

mt = m /cos β = 2 / cos 6,4° = 2,012

Диаметры вершин зубьев:

dа1 = d1 + 2m = 239 + 2 · 2 = 243 мм;

dа2 = d2 + 2m = 80 + 2 · 2 = 84 мм.

Проверочный расчет.

Проверка контактных напряжений.

σН = ZE ZH ZεПривод к ленточному конвейеру


Коэффициент жесткости материала:


ZE = Привод к ленточному конвейеру; Вi = Ei / (1 – μi2).


У колес из стали 40Х:

Е = Е1 = Е2 = 210 ГПа; μ1 = μ2 = 0,3.


ZE = Привод к ленточному конвейеру= Привод к ленточному конвейеру= Привод к ленточному конвейеру= 5,78 · 104


Коэффициент формы зуба:


ZН = Привод к ленточному конвейеруПривод к ленточному конвейеру; tg αt = tg 20є / cosβ = tg 20є / cos 6,4° = 0,37


αt = 20,3є

β0 = arcsin (sin β · cos 20є) = arcsin (sin 6,4° · cos 20є) = 6,01є


ZН = Привод к ленточному конвейеруПривод к ленточному конвейеру= 2,47


Коэффициент полной длины линии

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: