Расчет и подбор нормализованного теплообменного аппарата
Размещено на
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
(ВолгГТУ)
Кафедра ПАХП
Курсовая работа
на тему:
Расчет и подбор нормализованного теплообменного аппарата
Выполнил: студент
группы ХТ-341
Ошкин Михаил Иванович
Волгоград 2008г.
Содержание
Аннотация
Введение
Общая часть
1. Определение расхода теплоты и расхода воды
2. Приблизительная оценка
Расчет и подбор теплообменных аппаратов
Вариант №1: D = 273мм, n = 37, z =1 и F = 9
Вариант №2: D = 325мм, n = 56, z =2 и F = 13
Расчет нагрузочной характеристики
Заключение
Приложение №1
Приложение №2
Список используемой литературы
Аннотация
В данной семестровой работе рассматривается процесс передачи энергии в форме тепла и на основе расчетных данных осуществляется подбор теплообменного аппарата.
В данном случае рассматривается процесс охлаждения жидкости с заданным расходом.
Исходными материалами являются ацетон и скважинная вода. Вода является охладителем с начальной температурой равной . Для исключения накипи в межтрубном пространстве конечная температура воды не превышает , т.е. принята .
Жидкости подаются в теплообменный аппарат противоточно, при условии, что осуществляется развитое турбулентное течение. Кожух теплообменного аппарата выполнен из материала – сталь, с толщиной 2мм, без учета расчета на прочность. Подбор теплообменного аппарата осуществляется при условии, что поверхность теплообмена не будет превышать 10%. Исходным материалом для расчета поверхности теплообменного аппарата является учебник: К.Ф. Павлов, П.Г. Романков, А.А. Носков «Примеры и задачи по курсу процессов и аппаратов химической технологии».
Введение
теплообменный аппарат ацетон
В зависимости от способа передачи тепла различают две основные группы теплообменников:
1) поверхностные теплообменники, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена – глухую стенку;
2) теплообменники смешения, в которых тепло передается от одной среды к другой при их непосредственном соприкосновении.
Теплообменники и холодильники могут устанавливаться горизонтально и вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников – также и из латуни. Распределительные камеры и крышки холодильников выполняют из углеродистой стали.
Кожухотрубчатые конденсаторы предназначены для конденсации паров в межтрубном пространстве, а также для подогрева жидкостей и газов за счет теплоты конденсации пара. Они могут быть с неподвижной трубчатой решеткой или с температурным компенсатором на кожухе, также вертикальные и горизонтальные. От холодильников они отличаются большим диаметром штуцера для подвода пара в межтрубное пространство.
В кожухотрубчатых испарителях в трубном пространстве кипит жидкость, а в межтрубном пространстве может быть жидкий, газообразный, парообразный, парогазовый или парожидкостной теплоноситель. Эти теплообменники могут быть только вертикальные, с неподвижной трубной решеткой или с температурным компенсатором на кожухе.
В работе используется кожухотрубчатый теплообменник. Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей. Этот теплообменник относится к числу наиболее часто применяемых поверхностных теплообменников. В теплообменнике одна из обменивающихся теплом сред движется внутри труб, а другая – в межтрубном пространстве. Среды обычно направляются противоположно друг другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, - в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения ее плотности при нагревании или охлаждении.
Конструкции теплообменников должны отличаться простотой, удобством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать возможно меньшее загрязнение поверхности теплообмена и быть легко доступной для осмотра и очистки.
Конденсация ацетона водой
Примем следующие индексы:
«1» - для ацетона
«2» - для воды
Общая часть
1. Определим расход теплоты и расход воды на охлаждение ацетона
Примем температуру ацетона на входе в теплообменник равной tн1 = 56 0С. Конечная температура ацетона, по условию задания, равной 36 0С. Вода подается в теплообменник с начальной температурой tн2 = 17 0С. Конечная температура равна tн2 = 27 0С.
- средняя температура воды:
0С
Данным условиям соответствуют следующие физико-химические показатели воды:
С2 = 4231,9 Дж/(кг К) – теплоемкость этилацетата (стр. 562, рис. XI, [1]);
λ2 = 0,593 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);
ρ2 = 998 кг/м3 – плотность этилацетата (стр. 512, т. IV, [1]);
μ2 = 1 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).
- среднюю логарифмическую разность температур:
56→36
27←17
290С 190С
Т.к. , используется формула:
0С
Расчет - температурного коэффициента:
где
при , ,
тогда ,
тогда0С
- среднюю температуру исходного вещества:
0С
Данным условиям соответствуют следующие физико-химические показатели ацетона:
с1 = 2304,5 Дж/(кг К) – теплоемкость этилацетата (стр. 562, рис. XI, [1]);
λ1 = 0,163 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);
ρ1 = 762,5 кг/м3 – плотность этилацетата (стр. 512, т. IV, [1]);
μ1 = 0,257 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).
Определим расход исходного вещества :
С учетом потерь теплоты в размере 5% , тепловая нагрузка составит:
Расход воды составит:
Объемные расходы исходного вещества и воды:
0,00546
0,00477
2. Наметим варианты теплообменных аппаратов
Для этого определим ориентировочное значение площади поверхности теплообмена, принимая (стр. 47, т. 2.1, [2]):
Для более интенсивного теплообмена необходим аппарат с турбулентным режимом течения теплоносителей. Направим в трубное пространство воду, а в межтрубное пространство – ацетон. Также для наиболее эффективного теплообмена необходимо, чтобы трубы в аппарате располагались в шахматном порядке.
В теплообменниках с диаметром труб по ГОСТу 15120-79 скорость течения исходного вещества при должна быть более:
0,525
При этом число труб в аппарате обеспечивающих объемный расход исходного вещества при турбулентном режиме течения:
31,1=31 шт.
Расчет и подбор теплообменных аппаратов
Вариант №1:
D = 273 мм, n =37 , z =1 и F=9 м2 :
Определим расчетное значение площади поверхности теплообмена и рассчитаем запас поверхности теплообмена у теплообменного аппарата данного типа.
Размер стрелки сегмента:
мм
Расстояние между перегородками:
мм
Где
Определим скорость и критерий Рейнольдса для исходного вещества:
36847
Для воды:
Определим коэффициенты теплоотдачи:
- для воды:
Теплоотдача течении в прямых трубах и каналах (), критерий Нуссельта рассчитывается по формуле (см. стр. 152, (4.17), [1])
εl = 1 – поправочный коэффициент, учитывающий влияние на коэффициент теплоотдачи отношения длины трубы к ее диаметру.
Откуда
Рассчитаем критерий Прандтля:
Тогда по формуле:
62,78
Принимаем значение = 1.
Коэффициент теплоотдачи:
1773
- для ацетона:
Рассчитаем критерий Прандтля:
3,633
Приняв.
Коэффициент теплоотдачи:
1299
Применительно к кожухотрубчатым теплообменникам с поперечными перегородками в формуле принимают коэффициент , учитывая, что теплоноситель в межтрубном лишь часть пути движется поперек труб и при угле атаки меньшем 900.
Примем тепловую проводимость загрязнений стенки со стороны воды равной (табл. 2.2, [2]), коэффициент теплопроводимости стали равной (табл. XXVIII, [1]), тепловую проводимость загрязнений стенки со стороны исходного вещества равной (табл. 2.2, [2]).
Тогда
Коэффициент теплоотдачи рассчитаем по формуле:
Поверхностная плотность теплового потока:
Расчетная площадь поверхности теплообмена составит:
14,5
Запас поверхности составляет при этом:
Запас поверхности теплообмена данного аппарата не удовлетворяет условию. По аналогичной схеме рассчитаем другой вариант.
Вариант №2
D =325 мм, n =56 , z =2 и F = 13 :
Определим скорости и критерии Рейнольдса:
- для исходного вещества:
- для воды:
Определим коэффициенты теплоотдачи:
- для ацетона:
- для воды:
Коэффициент теплопередачи:
Поверхностная плотность теплового потока:
Расчетная площадь поверхности теплообмена:
Запас поверхности составляет при этом:
Запас поверхности теплообмена данного аппарата удовлетворяет условию.
Расчет нагрузочной характеристики
Примем следующий интервал температур стенки со стороны горячего теплоносителя:
T1 = / 25 30 40 50 55/ 0С
Данным температурам соответствуют следующие физико-химические показатели исходного вещества:
с1.1 =2220,7 Дж/(кг К) – теплоемкость при tст =25 0C;
с1.2 = 2258,41 Дж/(кг К) – теплоемкость при tст =30 0C;
с1.3 = 2283,55 Дж/(кг К) – теплоемкость при tст =40 0C;
с1.4 =2308,69 Дж/(кг К) – теплоемкость при tст = 50 0C;
с1.5 =2342,21 Дж/(кг К) – теплоемкость при tст =55 0C;
λ1.1 =0,169 Вт/(м К) ρ1.1 = 785,3 кг/м3
λ1.2 =0,167 Вт/(м К) ρ1.2 = 779,5 кг/м3
λ1.3 = 0,165 Вт/(м К) ρ1.3 =768 кг/м3
λ1.4 =0,163 Вт/(м К) ρ1.4 = 757 кг/м3
λ1.5 =0,162 Вт/(м К) ρ1.5 = 751,5 кг/м3
μ1.1 = 0,3075 10-3 Па с
μ1.2 =0,293 10-3 Па с
μ1.3 = 0,268-3 Па с
μ1.4 = 0,246 10-3 Па с
μ1.5 = 0,476 10-3 Па с
Скорость исходного вещества равна:
Критерии Рейнольдса и Прандтля:
24209,73
26077,6
28002,85
14366,9
3,96