Циркулярні насоси

Вступ


На сучасному етапі атомна енергетика розвивається головним чином за рахунок будівництва ядерних енергетичних блоків потужністю 1 млн кВт та з більш киплячим (РБМК) і водно-водяним під тиском (ВВЕР) реакторами. Створення таких потужних енергетичних блоків зажадало різке укрупнення устаткування, включаючи головні циркуляційні насоси (ГЦН). Ці насоси виконують відповідальну роль - прокачують теплоносій (воду) через активну зону реактора в умовах високого тиску, температур та наведеної радіоактивності і значною мірою визначають надійність та стійкість експлуатації реакторів. Найменші перебої та неполадки в їх роботі абсолютно недопустимі. Крім того, ГЦН істотно впливають на економічні показники атомних електростанцій (АЕС). Потужність, яку споживають циркуляційні насоси, становить від 1% до 4% електричної потужності блоку. Наприклад, для реакторів ВВЕР потужністю 1000 МВт електроприводи всіх циркуляційних насосів першого контуру споживають до 25000 кВт. Маса одного зібраного насосного агрегату досягає 100 т. Вартість комплекту циркуляційних насосів для реакторів великої потужності порівнянна з вартістю власне реактора (без паливного завантаження) [8].

Параметри розроблюваних та тих, що знаходяться в експлуатації ГЦН для киплячих та водно-водяних реакторів під тиском, характеризуються значеннями, що наведені нижче [11]:


Циркулярні насоси

До недавнього часу в якості ГЦН використовувалися безсальникові герметичні насоси. Їх конструкція дозволяла забезпечити повну відсутність витоків — одна з основних вимог, що ставляться до ядерних установок. Проте створення герметичних насосів на великі подачі, що вимагаються для сучасних реакторів, та потужності технічно поки нерозв’язне, тому виникла необхідність переходу на циркуляційні насоси з ущільненням вала. Ці насоси у порівнянні з герметичними насосами мають такі переваги [8, 21]:

- знімний електричний або паротурбінний привід, який можна легко замінювати при несправностях та ремонтувати у звичних умовах;

- можливість за необхідності збільшувати за рахунок маховика інерційний вибіг ротора насоса для забезпечення циркуляції теплоносія в контурі в перші десятки секунд після несподіваного аварійного знеструмлення;

- насоси з ущільненням вала дешевші (на 50—60%) та мають вищий ККД (на 15—20%), що важливо для насосів з великою подачею;

- ремонтопридатний в умовах експлуатації.

Головні циркуляційні насоси з ущільненням вала (рис. 1), як правило, виконані з вертикальним розміщенням вала, на консолі якого у нижній частині встановлюється робоче колесо 1. У корпусі 3 розміщений направляючий апарат 2. З корпусом сполучені виймальна частина 4, де розміщені тепловий бар’єр 6, гідродинамічний або гідростатичний опорний підшипник 5, змащений водою, вузол механічного ущільнення 7, проставка 8 на роторі насоса, яка дозволяє замінювати ущільнення без розбирання верхньої частини насосного агрегату. До виймальної частини корпусу високого тиску кріпиться циліндрова рама 9, що служить опорою для опорно-упорного підшипника 10 та електродвигуна.


Циркулярні насоси

Рисунок 1 - Компонування головного циркуляційного насоса з ущільненням вала


Опорний підшипник 5 встановлюють, як правило, у безпосередній близькості від робочого колеса. Він призначений для сприйняття радіального зусилля, що діє на ротор насоса, через нерівномірність тиску в камері відведення. Тепловий бар’єр 6 служить для обмеження теплового потоку в зону вузла ущільнення вала.

Найважливішим елементом у розглянутій конструкції ГЦН є вузол ущільнення вала. Від нього залежать надійність та довговічність роботи насоса і, як наслідок, експлуатаційна готовність всього блоку. Ущільнення повинні забезпечувати необхідну герметичність при роботі насоса на різних експлуатаційних та аварійних режимах. Витоки радіоактивної води першого контуру через ущільнення назовні не повинне перевищувати декількох кубічних сантиметрів за годину, а організовані витоки запірної (очищеної) води — 0,5—1 м3/год. Витрата запірної води всередину насоса також повинна бути невеликою. Ущільнення вала повинне зберігати свою працездатність після короткочасного знеструмлення системи електроживлення насосів, внаслідок чого може припинятися подача замикаючої та охолоджуючої води. За надійністю система ущільнення не повинна поступатися іншим вузлам насоса та працювати протягом декількох років без заміни. Конструкція ущільнення повинна бути блоковою та забезпечувати тим самим швидку зміну ущільнення в насосі без демонтажу всієї установки.

Створення для ГЦН великої потужності ущільнень вала, розрахованих на високі перепади тиску (17,5 МПа), температури (310 °С) та окружні швидкості (25 м/с), що відповідають переліченим вище вимогам, становить складну технічну задачу. Незважаючи на те, що у промисловій експлуатації за останнє десятиліття з’явилося багато конструкцій ГЦН з ущільненням вала, за якими накопичений певний досвід, питання створення ущільнювальних систем, що мають високу надійність, герметичність та великий ресурс роботи, залишається до кінця невирішеним та служить предметом дослідження багатьох провідних насособудівельних фірм.


Огляд існуючих конструкцій


Принцип роботи більшості ущільнень вала, що набули поширення в ГЦН, полягає у тому, що запірна (буферна) холодна та очищена вода подається від стороннього джерела в камеру ущільнення під тиском, дещо перевищуючим тиск у порожнині насоса. Під дією цього перепаду частина запірної води проходить всередину насоса (внутрішні витоки), інша частина проходить через основне ущільнення, що дроселює, та відводиться в зливну місткість (організовані витоки). Ущільнення, що дроселює, служить для обмеження організованих витоків та зменшення тиску перед замикаючим ущільненням, яке запобігає зовнішньому (неорганізованому) витоку води з насоса. У деяких конструкціях на випадок виходу з ладу замикаючого ущільнення встановлюється додаткове аварійне ущільнення, при цьому в зону між ними подається повітря під тиском у декілька атмосфер.

Таким чином, ущільнення вала є складною системою, в яку, як правило, входять підживлювальний насос високого тиску, холодильники, фільтри, внутрішнє, основне дроселююче ущільнення, замикаюче та аварійне ущільнення, контрольно-вимірювальна апаратура для вимірювання тиску, величини витоків та температури.

Для нормальної роботи ущільнень необхідно перш за все, щоб температура води в зоні ущільнень не перевищувала 60 °С [13], що досягається шляхом подачі охолодженої нерадіоактивної запірної води від спеціальної системи інжекції або від системи підживлення першого контуру. Такий спосіб охолоджування не залежить від режиму роботи ГЦН, виключає потрапляння радіоактивних частинок та забруднення ними вузла ущільнення. На лінії підведення запірної води в зону ущільнення встановлюються фільтри, що забезпечують очищення води від механічних домішок розмірами до 5—50 мкм. У деяких випадках для замикання використовують воду з напірного патрубка насоса, заздалегідь охолоджену в теплообміннику. Проте така система ускладнюється через вимоги біологічного захисту та техніки безпеки при ремонтних роботах.

У сучасних конструкціях ГЦН найбільше поширення набули звичайні торцеві, гідродинамічні та гідростатичні ущільнення. Плаваючі ущільнення з радіальним зазором, не зважаючи на їх надійність та порівняльно великий досвід експлуатації в потужних живильних насосах, використовуються рідко через відносно великі витоки [18].

Звичайні торцеві ущільнення забезпечують практично повну герметичність, що спонукало використовувати їх в ГЦН. Питання проектування, дослідження та експлуатації торцевих ущільнень розглядаються у спеціальній літературі [1,4] та в даному огляді детально на них зупинятися немає потреби. Слід лише відзначити, що робочі поверхні в торцевих ущільненнях знаходяться в контакті та піддаються безперервному зносу. У зв’язку з цим доводиться зважати на кінцевий термін їх служби. У роботі [4] наведена залежність очікуваного терміну служби торцевого ущільнення від тиску, яка побудована на підставі статистичних даних, що належать до торцевого ущільнення насосів з діаметром вала 100 мм, коловою швидкістю 5 м/с та температурою води 65 °С. При тиску 10 МПа термін служби ущільнення становить близько 1000 годин, при 6 МПа він досягає шести місяців та лише при тиску нижче 1 МПа можна розраховувати на роботу протягом двох-трьох років. Тому в циркуляційних насосах, ресурс яких повинен становить більше 10000 годин, застосування одинарних торцевих ущільнень недоцільне. Для збільшення терміну служби використовують багатоступеневих конструкції з рівномірним розподілом між ними повного перепаду тиску. Звичайно у ГЦН застосовують 2—4 ступені торцевих ущільнень або використовують одну ступінь як замикаючу в поєднанні, наприклад, з гідростатичним ущільненням [16].

На рисунку 2 показане триступеневе торцеве ущільнення для ГЦН з реактором РБМК [11], в якому досягається рівномірний розподіл тиску між ступенями при допомозі дроселів, встановлених на зовнішній лінії. Поділ тиску супроводжується постійними витоками через зовнішню лінію, що становить декілька сотень літрів за годину. Тепло, що виділяється від тертя контактуючих поверхонь, відводиться через спеціальний замкнутий контур з теплообмінником та фільтром для уловлювання продуктів зносу. Циркуляція в контурі охолодження створюється вбудованим всередину ущільнення осьовим лабіринтовим насосом (імпелером). Температура води, що допускається, перед ущільненням 60 °С.


Циркулярні насоси

Рисунок 2 - Триступеневе торцеве ущільнення:

1 - дросель; 2 - теплообмінник; 3 - фільтр; 4 - імпелер;

5 - пружина; 6 — аксіально-рухома втулка; 7 - опорне кільце


Щоб забезпечити протягом певного часу достатню герметичність ущільнення в аварійних ситуаціях при виході з ладу однієї із ступеней, кожна з них розраховується на повний перепад тиску. Основними елементами ущільнення служать аксіальна рухома втулка та нерухоме опорне кільце, які постійно притискаються одне до одного тиском середовища та пружинами. В якості пари тертя використовуються карбід вольфраму та графіт з бабітовим просоченням.

Сфера застосування одинарних торцевих ущільнень звичайно характеризують критерієм pv, де р — перепад тиску на ущільненні, МПа та v — швидкість ковзання на робочих поверхнях, м/с. На підставі аналізу ущільнень іноземних фірм у роботі [2] наводяться значення р v, що дорівнюють 8—36 МПа·м/с (нижнє значення відповідає парі тертя графіту по стеліту в середовищі масла, а верхнє — парі графіту по карбіду вольфраму в середовищі морської води), при яких забезпечується дворічний ресурс роботи ущільнення. Для деяких типів торцевих ущільнень фірма «Крейн Пекінг» (Великобританія) [17] допускає значення pv = 70-80 МПа·м/с, а фірма «Бургман» (Німеччина) [12] — до 100 МПа·м/с. Вказані допустимі значення недостатні для умов роботи ущільнень в ГЦН, особливо для блоків з реакторами ВВЕР. Їх можна дещо розширити, якщо використовувати більш зносостійкі пари тертя (наприклад, з силіційованого графіту), правильно вибрати конструкцію аксіальної рухомої втулки та ущільнювального кільця до неї. В цьому випадку вплив осьового биття та перекосів, викликаних неточністю обробки деталей або їх деформацією від дії тиску та температури рідини, зводиться до мінімуму, і ущільнення здатне працювати тривалий час без пошкоджень. Прикладом такої конструкції служить подвійне торцеве ущільнення для ГЦН з реактором РБМК [9]. Ущільнення контактне та виконано у вигляді єдиного блоку. До його складу входять внутрішня та зовнішня ступені торцевого ущільнення, тепловий бар’єр з боку порожнини насоса та теплообмінник, розташований безпосередньо у камері ущільнення. Аксіальні рухомі втулки разом з пружинами встановлюються на валу та своїми торцевими поверхнями притискаються у відповідь до нерухомих втулок. Основні елементи ущільнення ретельно урівноважені, що дозволяє виключити порушення поверхні контакту. Парами тертя служать кільця з силіційованого графіту. Завдяки конструктивним особливостям кожна із ступеней торцевого ущільнення призначена для роботи при повному перепаді тиску.

У камеру між ступенями подається чиста запірна вода. Проте завдяки малій величині витоків (6—10 л/год) та наявності в корпусі ущільнення вбудованих холодильників вона може протягом тривалого терміну працювати без подачі запірної води (на воді першого контуру). Критерій pv становить 130 МПа·м/с. Ущільнення допускає значне радіальне биття (до 0,4 мм) та осьові переміщення (до 3 мм) вала при роботі насоса. При цьому навантаження від пружин на ущільнювальні поверхні не змінюється. Вузол ущільнення випробуваний протягом тривалого часу на спеціальних стендах та в ГЦН показав стійку та надійну роботу. Зношення тертьових ущільнюючих поверхонь склав 3—4 мкм за 8000—10000 годин роботи.

Запропонована конструкція торцевого ущільнення, в якій одне з кілець має еліптичну форму ущільнювального пояска (рис. 3, а) [19], що сприяє поліпшенню змащенню та відведенню тепла із зони тертя. Розміри еліптичної поверхні вибирають так, щоб велика вісь внутрішнього еліпса була рівна меншій осі зовнішнього еліпса. У результаті за один оберт вся ущільнювальна поверхня приблизно половину часу знаходиться у контакті з рідиною, віддаючи їй тепло. Витоки рідини через еліптичне ущільнення дещо більше, ніж для звичайного ущільнення, та може становити декілька літрів за годину. Дане ущільнення з парою тертя карбіду вольфраму по графіту, встановлене в спеціальній дослідній петлі, пропрацювало понад 35000 годин. При цьому зроблено більше 450 зупинок та пусків насоса. Витоки через кожне ущільнення (всього були встановлені послідовно два ущільнення на загальний тиск 9,8 МПа) становили від 0,019 до 1,9 л/год. Знос графіту від 38 до 76 мкм, кільце з карбіду вольфраму зносу практично не мало. На підставі накопиченого на експериментальній установці досвіду еліптичні ущільнення були встановлені на п’яти циркуляційних насосах та пропрацювали в цілому 20000 годин при рv=125 МПа·м/с. Ця конструкція захищена патентом у Канаді та в інших країнах.

Умови роботи, подібні до умов в еліптичних ущільненнях, можна одержати, застосовуючи ексцентрично розташовані ущільнювальні пояски (рис. 3 б). Проте у цьому випадку навантаження на стику стає несиметричним, що є істотним недоліком таких ущільнень.

Останніми роками на базі торцевих ущільнень створений ряд нових типів ущільнень, у яких ущільнювальні пояски розвантажені та працюють з невеликим зазором у режимах тертя, близьких до рідинного. До них належать гідродинамічні та термогідродинамічні ущільнення.

У гідродинамічних ущільненнях, окрім ущільнювального паска, характерного для торцевих ущільнень, є додаткові опорні поверхні з клинами, що звужуються в тангенціальному напрямі та розділені між собою канавками (рис. 3 в). При обертанні вала на клиноподібних поверхнях виникає додаткова гідродинамічна сила, обернено пропорційна квадрату зазору. Рівновага аксіально рухомої втулки автоматично підтримується за рахунок зміни сили на клинах при відхиленні зазору від оптимального значення. При зупиненні ущільнення закривається та забезпечує герметичність. Крім скосів для створення підйомної сили, можна використовувати приховані сходинки Релея (рис. 3 д), спіральні канавки (рис. 3 е) [10]. Проте ці ущільнення не набули значного поширення в циркуляційних насосах через складну технологію їх виготовлення, особливо при використанні в парах тертя матеріалів з високою твердістю.


Циркулярні насоси

Рисунок 3 - Варіанти торцевих ущільнень:

а - еліптичний поясок; б - ексцентричний поясок;

в - гідродинамічне ущільнення; г - термогідродинамічне ущільнення;

д - сходинка Релея; е - спіральні канавки


Принцип роботи термогідродинамічних ущільнень грунтується на використанні деформації кілець під дією термічних напружень у зоні контакту. Запропонована конструкція термогідродинамічного ущільнення [4], в якій на поверхні одного з кілець виконуються серпоподібні канавки (рис. 3 г), сприяють утворенню мікроклинів за рахунок різниці температури, що утворюється в результаті нерівномірного охолоджування робочої поверхні кільця в окружному напрямі. У зоні мікроклинів при обертанні виникають додаткові підйомні сили, що дозволяють значно зменшити контактний тиск на робочих поверхнях та коефіцієнт тертя. Перевага цих ущільнень полягає у тому, що із зростанням швидкості ковзання та перепаду тиску різниця температур між окремими ділянками робочої поверхні зростає. Під дією великих термічних напружень та викликаних ними деформацій, розширяються зони, займані мікроклинами, збільшуються підйомні сили та знижується коефіцієнт тертя у робочому зазорі.

Так, зменшення коефіцієнта тертя від 0,05 до 0,005 дозволяє підвищити для цих ущільнень критерій pv до 500 МПа·м/с. Термін служби термогідродинамічних ущільнень завдяки зниженню тертя та зносу — високий, а витоки, наприклад, при перепаді 5 МПа, становить декілька літрів за годину. При зупиненні термогідродинамічне ущільнення забезпечує повну герметичність, оскільки не відбуваються деформації поверхонь під дією додаткових термічних напружень, викликаних тертям.

Прикладом використання термогідродинамічнх ущільнень може служити конструкція (рис. 4) [4] для циркуляційних насосів виробництва фірми «Клейн, Шанцлін, Беккер» (КСБ) з водно-водяним реактором АЕС Обрігхайм (Німеччина). Діаметр вала під ущільненням 182 мм, перепад тиску 14—15 МПа та частота обертання вала 1490 об/хв. Тут термогідродинамічне торцеве ущільнення 2 виконує роль замикаючого та працює при тиску 0,5—1 МПа з витоками близько 100 см3/год, хоча воно і розраховується на повний робочий перепад тиску, який може виникнути перед ним у аварійному режимі. Тиск перед замикаючим ущільненням знижується за допомогою двох послідовно розташованих ступеней гідростатичного ущільнення 1, на кожній з яких спрацьовує приблизно 7 МПа при організованих витоках 400—500 л/год, які відводяться через отвір 3. Тут гідростатичне ущільнення має на одній із торцевих поверхонь ряд замкнутих камер, які зв’язуються через дросель з ущільнювальною порожниною. Загальні витрати запірної води з температурою 40-500С становить близько 1,5 м3/год. Термогідродинамічні ущільнення експлуатувалися протягом багатьох років на АЕС Обрігхайм, пропрацювали без ремонту більше 38000 годин та продовжували працювати. При профілактичних оглядах насосів у цих ущільненнях заміняли тільки вторинні ущільнювальні кільця круглого перерізу з еластомеру.


Циркулярні насоси

Рисунок 4 - Комбіноване ущільнення вала ГЦН з водно-водяним реактором АЕС «КВО Обрігхайм» (Німеччина)


Для реакторів РБМК фірма КСБ застосовує в циркуляційних насосах на повний перепад тиску 9,5 МПа здвоєні термогідродинамічні ущільнення 1 та 2 (рис. 5), між якими тиск ділиться навпіл за допомогою дроселів 3 та 5 при організованих витоках через них 0,5 м3/год. Третя ступінь 4 ущільнення аварійна та є торцевим ущільненням, яке в нормальних умовах за допомогою пружин залишається відкритим. При виході з ладу ступені 2, а отже, і збільшенні зовнішніх витоків через неї, аварійне ущільнення під дією виниклого перепаду тиску закривається та забезпечує необхідну герметичність всього вузла як при вибігу насоса, так і при його зупинці.


Циркулярні насоси

Рисунок 5 - Комбіноване ущільнення вала ГЦН з киплячим реактором АЕС «Крюммель» (Німеччина)


Постійне удосконалення конструкцій термогідродинамічних ущільнень дозволило останнім часом у деяких циркуляційних насосах використовувати комбіновані вузли ущільнень, в яких остання та передостання ступені термогідродинамічні. Такий вузол ущільнення застосований в ГЦН фірми КСБ для реактора ВВЕР потужністю 1300 МВт АЕС Унтервгзер (Німеччина) [4].

При високих перепадах тиску та швидкостях обертання, коли потрібен великий ресурс та допускаються незначні витоки, все ширше застосовуються ущільнення з безперервною рідинною плівкою. До них належать гідростатичні ущільнення, що складаються з тихжесамих елементів, що і звичайні торцеві. Для створення гарантованого зазору між ущільнювальними поверхнями (рис. 6 а) на одній з них виконуються замкнуті камери 2, які з’єднуються через дроселі 3 з ущільнювальною порожниною 1. Величина осьового зазору залежить від розмірів дроселів, камер, а також від зусилля пружин. Дроселі тут виконують роль регулюючого органу на байпасі та забезпечують саморегулювання осьового зазору. При зменшенні зазору епюра тиску в щілині зростає, а при збільшенні - знижується. Для обмеження витоків через ущільнення та забезпечення саморегулювання осьового зазору між поверхнями ущільнювачів дроселі повинні мати великий гідравлічний опір і тому виконуються з вельми малим поперечним перерізом (капілярним). Істотний недолік капілярів полягає в схильності їх до засмічення та ерозійного зносу. У обох випадках нормальна робота ущільнення порушується. Крім того, дроселі повинні ретельно таруватися та мати однакову витратну характеристику.

Фірма «Помп Гінар» (Франція) для циркуляційних насосів запропонувала гідростатичне ущільнення, подібне до розглянутого, в якому дроселями служать капілярні канавки, виконані безпосередньо на робочій поверхні та сполучені з ущільнювальною порожниною [15]. Таке ущільнення дозволяє дещо збільшити поперечний перетин дроселів за рахунок їх подовження, а також створити сприятливі умови для очищення дроселів від механічних частинок завдяки відносному обертанню поверхонь ущільнювачів. Оскільки ці поверхні, як правило, виконуються з дуже твердих та зносостійких матеріалів, в даному ущільненні ускладнюється процес виготовлення живильних капілярних каналів, які до того ж повинні мати однакову витратну характеристику.


Циркулярні насоси

Рисунок 6 - Гідростатичне ущільнення:

а — з фіксованим зазором; б — з регульованим зазором;

в-з контрольованими витоками

На рисунку 6 б показана конструкція гідростатичного ущільнення з саморегульованим осьовим зазором [21], у якій для розділення робочих поверхонь використовується гідростатичний тиск від стороннього джерела 1. Вода під високим тиском подається через капіляри 3 у порожнини камер 4, виконані на нерухомому кільці 2. Величина осьового зазору залежить від витрати води через капіляри. Ущільнення дозволяє розділити робочі поверхні ще до початку обертання вала, а також за необхідності регулювати подачу води в порожнину ущільнення, змінюючи тим самим осьовий зазор між робочими поверхнями. До недоліків такого ущільнення належить можливість пошкодження зовнішньої системи підтримки тиску, чутливість до ступеня забруднення рідини, до теплових перехідних процесів і до зміни характеристики дроселя у результаті засмічення або ерозії.

Становить інтерес гідростатичне ущільнення з проміжним відбором тиску (рис. 6 в) [8] фірми «Хайворд Тайлер» (Великобританія). Основні елементи ущільнення: кільце 2, яке обертається разом з валом 1, та аксіальний рухомий елемент (поршень) 3, встановлений в корпусі 5. На робочій торцевій поверхні поршня виконана кільцева канавка, пов’язана каналами з проміжною камерою. Під дією пружини 4 забезпечується первинний контакт між кільцем 2 і поршнем 3. Принцип роботи ущільнення базується на тому, що контрольований осьовий зазор між поверхнями ущільнювачів автоматично підтримується за допомогою зовнішнього дроселя 6. Якщо зазор збільшується, то в камері за поршнем підвищується тиск, що приводить до збільшення притискуючої гідравлічної сили. При зменшенні осьового зазору тиск за поршнем знижується, внаслідок чого ущільнення відкривається. Залежно від параметрів елементів ущільнення та дроселя поршень встановлюється у рівноважному положенні при певному осьовому зазорі. Оскільки в даній конструкції дросель розміщений поза ущільненням, то його можна спроектувати так, щоб уникнути засмічення та ерозії (наприклад, застосовуючи трубки певної довжини та перерізу).

Розглянута конструкція з промвідбіром використовувалася в блоці ущільнення (рис. 7), розробленому фірмою «Хайворд Тайлер» для головних циркуляційних насосів фінської АЕС «Ловіза». Робочий тиск та температура води у першому контурі становить відповідно 12,5 МПа та 270 °С. На прикладі цього насоса розглянемо роботу блоку ущільнення та його допоміжних систем [8].

Ущільнення працює на запірній воді, яка береться з першого контуру, охолоджується до 40 °С та очищається, проходячи через холодильник та іонообмінний фільтр. Автоматичні регулятори підтримують задане (0,5-0,06МПа) перевищення тиску запірної води над тиском у порожнині насоса, внаслідок чого близько 50% води, що підводиться (0,3-0,5 м3/год), надходить в насос, виключаючи вихід з нього гарячого радіоактивного теплоносія.

Блок ущільнення разом з підшипником ковзання 1, що працює на воді, відділяється від корпусу насоса спеціальним тепловим бар’єром — горловиною, охолоджуваною водою. Імпелер 2 прокачує запірну воду через камеру підшипника та холодильник 16, щоб виключити випадки місцевого закипання. Ту ж функцію виконують імпелери 4 та 6, що розташовані за першим 3 та другим 5 ступенем гідростатичного ущільнення. Перед замикаючим торцевим ущільненням 7 переливним клапаном 10 підтримується тиск 0,42-0,45 МПа. Зовнішні витоки через ущільнення 7 становить близько 300 см3/год, організовані витоки — 0,3 м3/год. Витоки через гідростатичні ущільнення 3 та 5, а отже, і торцевий зазор зберігаються постійними шляхом зміни провідності зовнішніх дроселів 13 та 12 регулюючими клапанами 15 та 14.

На випадок пошкодження або у аварійних ситуаціях передбачені заходи, що дозволяють нормально вимкнути з дії реакторну установку. Якщо припиняється подача запірної води або збільшуються її витоки через пошкоджене ущільнення, підвищується температура в камері підшипника, та при досягненні 650С магнітний клапан 15 починає закриватися, зменшуючи торцевий зазор в ущільненні 3. При подальшому збільшенні температури до 70 °С ущільнення 3 повністю закривається та працює як контактне торцеве ущільнення з мінімальним витоками. Запірна вода, що підводиться з автоматично включеної резервної системи, протікає в насос та знижує температуру в камері підшипника. Якщо необхідний ефект не досягається, то при підвищенні температури до 80 °С закривається друга ступінь
ущільнення 5.

У разі відмови обох ступеней ущільнення 3 та 5 тиск перед замикаючим торцевим ущільненням 7 і клапаном 10 стає більше допустимого та приводить до закриття клапана 1 і відкриття клапана 9, через який підноситься стисле повітря в камеру лабіринтового шпаринного ущільнення 8. При цьому ущільнення 7 повинне короткочасно до зупинки насоса сприймати повний перепад тиску. Якщо і воно вийде з ладу, роль ущільнення виконує лабіринтова втулка 8 з підведеним до неї під тиском 0,7 МПа стислим повітрям. Всі перелічені заходи повинні запобігти виходу назовні радіоактивної води протягом 3-10 хв, що вимагаються для нормальної зупинки агрегату.


Циркулярні насоси

Рисунок 7 - Блок механічного ущільнення фірми «Хайворд Тайлер» для ГЦН АЕС «Ловіза» (Фінляндія)

Недоліком розглянутої конструкції є те, що у ступенях гідростатичного ущільнення аксіальні рухомі поршні центруються по двох гумових ущільнювальних кільцях та не можуть достатньою мірою компенсувати перекоси контактних поверхонь, а у торцевій щілині відсутні умови для виникнення відновного моменту. Крім того, в схемі міститься багато регулюючих автоматичних пристроїв, які знижують надійність роботи блоку ущільнення, що виявилося в ході пуско-налагоджувальних робіт на АЕС «Ловіза-1». У результаті в ГЦН були встановлені простіші ущільнення фірми «Чемплейн» (Канада), подібні до ущільненням, які показані на рисунку 4. У них ступені гідростатичного ущільнень мають на робочій поверхні замкнуті камери, що поєднуються через дроселі з ущільнюваною порожниною.

Останнім часом з'явилися конструкції ГЦН для реакторів РБМК та ВВЕР, у яких повний перепад тиску спрацьовує на одній ступені гідростатичного ущільнення, а зовнішня герметичність забезпечується механічним ущільненням торцевого типу [20]. При цьому спрощуються системи подачі запірної води та охолоджування і підвищується надійність насосних агрегатів.

Фірмою «Вортінгтон» (Великобританія) розроблене гідростатичне ущільнення (рис. 8) з постійними за величиною витоками. Ущільнення складається з диска 1, розташованого на валу 12, та аксіальна рухома втулка 11, яка встановлена в корпусній проставці 4. На торцевої поверхні диска виконано гладкий ущільнювальний поясок 10 та опорні подушки 9. З боку камери 7 низького тиску на втулці 11 закріплений поршень 5. На лінії відведення організованих витоків розміщений дросель 6. Камера, утворена між поршнем 5 та корпусною проставкою 4, з'єднується з атмосферою каналом 3. Зовнішні витоки по валу обмежуються допоміжним ступенем торцевого ущільнення 8. Принцип роботи ущільнення базується на тому, що при обертанні між диском та аксіально рухомою втулкою утворюється осьовий зазор, по якому організовані витоки надходять з порожнини 2 високого тиску в камеру 7. За рахунок опору дроселя 6 у камері 7 встановлюється певний тиск, який діє на поршень 5 та втулку 11, прагне зменшити осьовий зазор у робочій щілині, а отже, і витоки. Із зменшенням витоків тиск у камері 7 трохи знижується, та відбувається зворотний процес. Шляхом вибору відповідних геометричних розмірів основних елементів ущільнення можна забезпечити постійні за величиною витоки, які автоматично підтримуватимуться гідравлічною силою, що діє з боку низького тиску [21].


Циркулярні насоси

Рисунок 8 - Гідростатичне ущільнення з постійними витоками


Ущільнення за принципом роботи аналогічне до клапана, що підтримує постійність витрати при зміні тиску. Простота конструкції у відсутності зовнішніх насосів, що робить дане ущільнення перспективним для застосування в ГЦН, проте через великі габарити воно більш чутливе до температурних деформацій.

На рисунку 9 показані гідростатичні ущільнення, на робочих поверхнях яких виконана сходинка Релея, конфузорність або їх комбінація. Такі конструкції дозволяють автоматично підтримувати певний зазор між робочими поверхнями за рахунок зміни епюри тиску залежно від зміни величини осьового зазору. Принцип роботи, особливості конструкцій та область їх застосування розглянуті у роботах [13, 14]. Ущільнення прості за конструкцією, не вимагають додаткових систем. Їх недоліки: відсутність вирівнюючого моменту та підвищена чутливість до зносу, оскільки сходинка та скіс мають розміри порядку декількох десятків мікрометрів.

У гідростатичних ущільненнях витоки через осьовий зазор майже не залежать від відносного обертання ущільнювальних кілець, а визначаються перепадом тиску. Тому під час стоянки витоки залишаються таким же, як і при роботі насоса. Для ущільнення вала при зупнці доводиться встановлювати послідовно з основним додаткові стоянкові ущільнення, що ускладнює та здорожчує конструкцію, її експлуатацію та ремонт.


Циркулярні насоси

Рисунок 9 - Гідростатичне ущільнення:

а - з мікросходинкою; б - зі скосом; в - зі скосом та мікросходинкою


Для безконтактної роботи гідростатичні ущільнення вимагають певного перепаду тиску, при якому утворюється гарантований осьовий зазор. Інакше кільця знаходяться у контакті та схильні до зносу під час роботи. Так, наприклад, фірма «Чемплейн» для гідростатичного ущільнення (подібне зображене на рис. 6 а) допускає запуск в роботу при перепаді тиску не менше 2 МПа. Тільки при такому перепаді гарантується безконтактна робота ущільнення.

У ВНДІАЕН розроблений новий тип

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: