Xreferat.com » Рефераты по промышленности и производству » Технологический процесс изготовления вала насоса

Технологический процесс изготовления вала насоса

1. Анализ исходных данных


Задача данного раздела – на базе анализа технических требований предъявляемых к детали и годового объема выпуска сформулировать задачи, которые необходимо решить в дипломном проекте для достижения цели, сформулированной во введении.


1.1 Анализ служебного назначения и условий работы детали


Деталь "Вал насос-мотора", чертеж 01.М15.017.011.000, является вращающейся деталью и предназначена для обеспечения передачи крутящего момента с шатунов на блок цилиндров насос-мотора, который работает как в режиме насоса, так и в режиме мотора. Вал в сборе с подшипниками устанавливается в корпус насос-мотора.


1.2 Систематизация и классификация поверхностей


Цель систематизации поверхностей – выявление поверхностей, имеющих определяющее значение для выполнения детали своих функций. При систематизации поверхностей будем опираться на данные (рис.1.1.).

Цель классификации поверхностей по служебному назначению – выявление поверхностей являющихся: основными и вспомогательными конструкторскими базами, поверхностей выполняющих исполнительные функции детали, а также свободных поверхностей не входящих во взаимодействие с другими сопряженными поверхностями. Классификацию поверхностей детали по служебному назначению сводим в таблицу 1.1.


Таблица 1.1.

Вид поверхности № поверхности
ИП

6,8,10,11,14,15,16,24,25,26,27,28,29,30,31,32,39,40,41,

а также 47 и 48 (не показаны)

ОКБ 6,8,13,29
ВКБ 1,5,17
СП остальные

Технологический процесс изготовления вала насоса


Рис. 1.1. Схема кодирования поверхностей и размеров детали


1.3 Анализ технологичности конструкции детали


Анализ технологичности конструкции детали будем проводить по следующим группам критериев:

технологичность заготовки;

технологичность установки;

технологичность обрабатываемых поверхностей;

технологичность общей конфигурации детали.


1.3.1 Технологичность заготовки

Вал изготавливается из стали 30 ХМ. Материал не является дефицитным, при относительно невысокой стоимости он обладает хорошими качествами: предел прочности при растяжении 610 МПа, предел прочности при сжатии 780 МПа, твердость 22…29 HRC.

В таблице 1.2 представлен химический состав данной стали, а в таблице 1.3 ее механические свойства.


Таблица 1.2 Химический состав стали 30ХМ, %

С Si Mn Cr Mo Ni P S Cu





не более
0.26-0.33 0.17-0.37 0.40-0.70 0.80-1.10 0.15-0.25 0.30 0.025-0.035 0.035-0.025 0.30

Таблица 1.3 Механические свойства стали 30ХМ в состоянии поставки

s0,2 s5 y

KCU,

Дж/см2

HRC
МПа %

610 780 18 64 147 25

Технологические свойства:

-температура ковки, °С: начала 1260, конца 760-800;

-свариваемость – ограниченно свариваемые;

- обрабатываемость резанием –при HB 229-269, sв = 610 МПа, KV тв.спл. = 0,70, KV б.ст. = 0,3

-склонность к отпускной хрупкости – не склонна.

Заготовку вала возможно получить отрезкой проката круглого профиля, так и штамповкой на горизонтально-ковочной машине (ГКМ). Наиболее предпочтительный вариант получения заготовки определим экономическим расчетом.

За критерий обрабатываемости принят коэффициент [бар]:


Технологический процесс изготовления вала насоса, (1.1)


где КГ – коэффициент, учитывающий группу стали по обрабатываемости;

sВ – предел прочности обрабатываемого материала;

nV – показатель степени при обработке;

Технологический процесс изготовления вала насоса.

Значение данного коэффициента будем учитывать при выборе материала режущих инструментов.


1.3.2 Технологичность установки

Черновыми базами для установки заготовки на первой операции могут быть цилиндрические и торцевые поверхности заготовки. В дальнейшем за базы приняты цилиндрическая пов. 2 и торцевая пов.1 и центровые отверстия ли цилиндрическая пов.13 и торцевая пов.15, в зависимости от установа. Данные технологические базы обеспечивают надежную ориентацию и закрепление заготовки, возможность свободного подвода инструмента при обработке.

Измерительные базы детали можно использовать в качестве технологических баз, т.к. точность и шероховатость этих баз обеспечивает требуемую точность обработки.

Таким образом, с точки зрения установки при обработке, деталь можно считать технологичной.


1.3.3 Технологичность обрабатываемых поверхностей

Предполагается обрабатывать все поверхности детали. Число обрабатываемых поверхностей 41: 16 цилиндрических: 2, 4, 6, 7, 8, 10, 11, 13, 18, 22, 24, 28, 29, 35, 38, 40; 15 торцевых: 1, 3, 5, 9, 21, 23, 25, 27, 30, 33, 34, 36, 37, 39; резьбовые поверхности: пов. 20, 32; сферические: 26, 31, 41; технологические канавки и уклоны: пов.9, 12; шпоночный паз 14, 15, 16; фаски, галтели.

Протяженность обрабатываемых поверхностей невелика и определяется условиями компоновки насоса-мотора.

Для обеспечения нормальной работоспособности всех узлов насоса-мотора назначены следующие требования к геометрии вала: допуск К5 на шейку вала, сопрягаемую с шестерней гидромашины, допуск ! на шейки под подшипники; допуски на шероховатость назначаем по [1], точность резьбовых соединений по [1], допуски торцевого и радиального биения назначаем по [8]. Точность и шероховатость поверхностей 6, 8, 13, 25 (ОКБ) определяется условиями эксплуатации вала. Уменьшение точности приведет к снижению точности установки вала в насосе-моторе. Все отверстия вала доступны для обработки. Поверхности различного назначения разделены, что облегчает обработку. Форма детали позволяет обрабатывать поверхность напроход. Обработка поверхностей в упор затруднений не вызывает.

Таким образом, с точки зрения обрабатываемых поверхностей, деталь можно считать технологичной.


1.3.4 Технологичность общей конфигурации детали

Деталь имеет достаточную жесткость и прочность. Радиусы закруглений и фаски выполняются по ГОСТ 10948-64, форма и размеры канавок по ГОСТ 8820-69. Такая унификация упростит обработку и контроль этих элементов вала.

Вал можно отнести к типу деталей "валы", для которых разработан типовой ТП.

Форма детали позволяет вести одновременную обработку нескольких поверхностей: цилиндрических- 6, 8 ,10,11 ,торцовых 1,2,4. При обработке на станке с ЧПУ сферических пов. 26 и 31 и нарезание резьбы в отверстиях можно осуществить на одной операции. Оборудование может быть простым, универсальным, оснастку также можно применять универсальную. Все поверхности вала доступны для контроля.

Таким образом, с точки зрения общей компоновки детали ее можно считать технологичной.

Поскольку деталь отвечает требованиям технологичности по всем 4 группам критериев, можно сделать вывод о ее достаточно высокой технологичности.


1.4 Формулировка задач дипломного проекта


На базе анализа технических требований к детали сформулируем задачи дипломного проекта:

1. Определить тип производства и выбрать стратегию разработки технологического процесса;

2. Выбрать оптимальный метод получения заготовки и маршрут обработки поверхностей;

3. Разработать технологический маршрут и схемы базирования заготовки;

4. Выбрать оборудование, приспособления, режущий инструмент, средства контроля;

5. Рассчитать припуски на обработку на спроектированные технологические операции

6. Рассчитать и спроектировать станочное приспособление для токарной операции и приспособление контроля биения отверстия

7. Рассчитать и спроектировать режущий инструмент для токарной операции

8. Провести линейную оптимизацию режимов резания на токарной операции

9. Спроектировать участок механического цеха

10. Провести научные исследования по повышению стойкости режущего инструмента и повышению производительности обработки

11. Рассмотреть мероприятия по обеспечению безопасности и экологичности проекта

12. Определить экономическую эффективность проекта.


2. Определение типа производства


2.1 Выбор и проектирование заготовки


Задача данного раздела – в зависимости от детали и годового объема выпуска определить тип производства и на его базе выбрать оптимальную стратегию разработки технологического процесса


2.1.1 Определение типа производства

Тип производства определяем с учетом годовой программы, массы детали и качественной оценки трудоемкости ее изготовления. По трудоемкости данную деталь можно отнести к деталям средней трудоемкости.

Определим массу детали по формуле:


Технологический процесс изготовления вала насоса , кг (2.1)


где ρ – плотность материала, для стали 30ХМ , принимаем ρ = 0,0785 кг/см3;

V – объем детали, см3

Объем детали определяем как алгебраическую сумму объемов тел за вычетом полых цилиндрических составляющих и сегментов, входящих в конфигурацию детали:


Технологический процесс изготовления вала насоса


Зная объем детали и плотность материала, из которого сделана деталь, определяем массу детали:

Технологический процесс изготовления вала насоса

Тип производства зависит от годового объема выпуска деталей, ее массы и трудоемкости. По трудоемкости данную деталь можно отнести к деталям средней трудоемкости, поэтому при годовом объеме выпуска N = 15000 шт /год и массе детали m =2,56 кг по] принимаем тип производства – среднесерийное.

Рассчитаем объем партии запуска изделий, шт:


Технологический процесс изготовления вала насоса (2.2)


где Nг – годовой объем выпуска деталей;

F – число рабочих дней в году.

Технологический процесс изготовления вала насоса


2.1.2 Выбор стратегии разработки технологического процесса

Задача данного подраздела – в зависимости от типа производства выбрать оптимальную стратегию разработки технологического процесса – принципиальный подход к определению его составляющих (показателей ТП), способствующей обеспечению заданного выпуска деталей заданного качества с наименьшими затратами.

1. В области организации технологического процесса:

Вид стратегии – последовательная, в отдельных случаях циклическая; линейная, в отдельных случаях разветвленная; жесткая, в отдельных случаях адаптивная;

Форма организации технологического процесса – переменно-поточная форма организации технологического процесса

Повторяемость изделий – периодически повторяющиеся партии

2. Метод получения заготовки:

Оптимальный вариант получения заготовки – прокат или штамповка на ГКМ;

Выбор последовательности обработки – по таблицам с учетом коэффициентов удельных затрат;

Припуск на обработку – незначительный;

Метод определения припусков – табличный.

3. В области разработки технологического процесса:

Степень унификации ТП – разработка технологического процесса на базе типового ТП;

Степень детализации разработки ТП – маршрутный или маршрутно-операционный технологический процесс;

Принцип формирования маршрута – концентрация операций и

совмещение по возможности переходов;

Обеспечение точности – работа на настроенном оборудовании, с частичным применением активного контроля;

Базирование – с соблюдением принципа постоянства баз и по возможности принципа единства баз на последующих операциях технологического процесса;

4. В области выбора средств технологического оснащения (СТО):

Оборудование – универсальное, в том числе с ЧПУ, специализированные;

Приспособления – универсальные, стандартные, нормализованные,

специализированные;

Режущие инструменты – стандартные, нормализованные, специальные;

Средства контроля – универсальные, специальные

5. В области проектирования технологических операций:

Содержание операций – одновременная обработка нескольких поверхностей, исходя из возможностей оборудования;

Загрузка оборудования – периодическая смена детали на станках, коэффициент закрепления операций от 10 до 20;

Расстановка оборудования – по группам станков, предметно замкнутые участки;

Настройка станков – по измерительным инструментам и приборам или работа без предварительной настройки по промерам.

6. В области нормирования технологического процесса:

Определение режимов резания – по общемашиностроительным

нормативам и эмпирическим формулам;

Нормирование – детальное пооперационное;

Квалификация рабочих – средняя;

Технологическая документация – маршрутные и операционные карты.

Принятой стратегией будем руководствоваться при разработке технологического процесса изготовления вала.


2.2 Выбор и проектирование заготовки


Задача данного подраздела - выбрать методы получения заготовки и обработки поверхностей, обеспечивающих минимум суммарных затрат на получение заготовки и ее обработку.


2.2.1 Выбор метода получения заготовки

Учитывая конструкцию изготавливаемого вала и материал заготовки – сталь 30ХМ, можно предложить два основных альтернативных метода получения заготовки:

1. Прокат;

2. Штамповка на ГКМ.

1. Прокат

По ГОСТ 2590-71 определим диаметр прутка для данной заготовки:

определим припуск на механическую обработку шейки вала наибольшего диаметра:


Технологический процесс изготовления вала насоса, (2.3.)


где Dдmin – наименьший предельный размер расчетной ступени по чертежу, мм;

2 Zomin – расчетный минимальный общий припуск на обработку по диаметру, мм;

Определим значение минимального припуска Технологический процесс изготовления вала насоса после каждой операции по формуле:


Технологический процесс изготовления вала насоса, (3.3)


где Rz , h, мм – высота неровностей и дефектный слой, образовавшиеся на обрабатываемой поверхности при предыдущей обработке;

Di ,мм- суммарное значение пространственных отклонений;

eуi,мм - погрешность установки.

Суммарное значение пространственных отклонений определим по формуле:


Технологический процесс изготовления вала насоса (3.4)


где Dк.о. –общая кривизна заготовки (учитывается на первой операции механической обработки);

Dсм - величина смещения заготовки, т.к. обработка ведется в патроне за величину смещения принимаем отклонение от соосности.

Общая кривизна заготовки:


Технологический процесс изготовления вала насоса (3.5)


где Dк – удельная изогнутость и коробление заготовки, мкм/мм;

l – длина заготовки, мм. Так как допустимая кривизна реза прутка не должна превышать 5 мм, длина заготовки составляет 209,5 мм.

Технологический процесс изготовления вала насоса

Технологический процесс изготовления вала насоса

Погрешность установки для однопозиционной обработки:


Технологический процесс изготовления вала насоса (3.6)


где eб – погрешность базирования;

eз – погрешность закрепления.

Так как при обработке диаметра измерительные и технологические базы совпадают, погрешность базирования eб = 0 при всех установках заготовки.

Технологический процесс изготовления вала насоса

Технологический процесс изготовления вала насоса

Технологический процесс изготовления вала насоса

по рассчитанному диаметру определяем ближайший диаметр заготовки из сортового проката: Dз = 95 мм.

Для проведения в дальнейшем технико-экономического обоснования выбора заготовки необходимо определить коэффициент использования материала для данного метода.

Коэффициент использования материала определим по формуле:


Ки1=q/Q, (2.2.)


где q – масса детали, q = 2,56 кг (см. п. 2.1.1.);

Q- масса заготовки

Объем заготовки: Технологический процесс изготовления вала насоса

Зная объем детали и плотность материала, определяем массу заготовки:

Технологический процесс изготовления вала насоса

Подставив полученные значения масс детали и заготовки в формулу 2.2., получим коэффициент использования материала для отрезки из проката: Ки1=2,56/11,653=0,22.

2. Штамповка на ГКМ

Ведем расчет поковки по ГОСТ 7505-89.

Исходные данные для расчета.

Ориентировочная величина расчетной массы поковки, кг:


Технологический процесс изготовления вала насоса (2.2.)


где МД –масса детали, кг;

Кр – расчетный коэффициент, устанавливаемый в соответствии с приложением 3 (табл.20).

Технологический процесс изготовления вала насоса

Класс точности – Т5 ( приложение 1).

Группа стали – М1 (табл.1).

Степень сложности – С3 (приложение 2).

Конфигурация поверхности разъема штампа – П (плоская) (табл.1)

Исходный индекс – 9 (табл.2).

По табл. 3 ГОСТ 7505-89 определяем припуски на механическую обработку, рассчитываем размеры поковки и их допустимые отклонения, учитывая дополнительные припуски, по табл. 8 ГОСТ 7505-89 назначаем допуски поковки. Все значения вносим в таблицу 2.1.


Таблица 2.1 Допуски и припуски на размеры поковки

Размер

детали, мм

Поверхн-ти,

на которые назначается припуск

Допуск

на размер

поковки, мм

Припуск,

мм

Расчет размера

поковки

Окончатль-ный размер (учитывая округления до 0,5 мм)
Ж87 2 1,4 1,4 Ж87+2Ч(1,4+0,3+0,4)

Ж91Технологический процесс изготовления вала насоса

Ж63 4 1,4 1,4 Ж63+2Ч(1,4+0,3+0,4)

Ж67Технологический процесс изготовления вала насоса

Ж45 11 1,4 1,5 Ж45+2Ч(1,5+0,3+0,4)

Ж50Технологический процесс изготовления вала насоса

19,5 33 1,2 1,3 19,5+(1,3+0,3+0,4)

21,5Технологический процесс изготовления вала насоса

21 5 1,2 1,4 21+(1,4+0,3+0,4)

23Технологический процесс изготовления вала насоса

Остальные требования по ГОСТ 7505-89

Дополнительные припуски, учитывающие:

смещение по поверхности разъема штампа - 0,3 мм (табл.4);

изогнутость и отклонения от плоскости и от прямолинейности – 0,4 мм (табл.5);

Радиус закругления наружных углов – 4,0 мм (табл.7).

Штамповочный уклон - 7Е (табл.18).

Для проведения в дальнейшем технико-экономического обоснования выбора заготовки необходимо определить коэффициент использования материала для данного метода. Коэффициент использования материала определим по формуле 2.2.

Объем заготовки определяем как алгебраическую сумму объемов тел за вычетом полых цилиндрических составляющих и сегментов, входящих в конфигурацию заготовки:

Технологический процесс изготовления вала насоса

Зная объем детали и плотность материала, определяем массу заготовки:

Технологический процесс изготовления вала насоса

Подставив полученные значения масс детали и заготовки в формулу (2.2.), получим коэффициент использования материала для ковки на горизонтально-ковочных машинах: Ки2=2,56/4,86=0,53.

Для окончательного решения по выбору метода получения заготовки, следует провести сравнительный экономический анализ по технологической себестоимости.


2.2.2 Экономическое обоснование выбора метода получения заготовки

Оценку эффективности различных вариантов получения заготовок чаще всего проводят по двум показателям:

а) коэффициенту использования материала заготовки (см. формулу 2.2.)

б) технологической себестоимости изготовления детали. Сюда включаются только те статьи затрат, величины которых изменяются при переходе одного варианта к другому.

На стадии проектирования технологических процессов оптимальный вариант заготовки, если известны массы заготовки и детали, можно определить путем сравнения технологической себестоимости изготовления детали, рассчитанной по формуле:


Sтд = Sзаг·Q + Sмех(Q-q) - Sотх(Q-q), (2.3.)


где Sзаг –стоимость одного кг заготовки, руб/кг;

Sмех – стоимость механической обработки, отнесенная к одному кг срезаемой стружки, руб/кг;

Sотх – цена 1 кг. отходов, руб/кг, Sотх = 0,0144 руб/кг;


Sмех = Sс + Ен·Sк , (2.4.)


где Sс – текущие затраты на 1 кг стружки, руб/кг;

Sк – капитальные затраты на 1 кг стружки, руб/кг;

По табл. 3.2 [Технология отрасли] для автомобильного и сельскохозяйственного машиностроения Sс = 0,188 руб/кг, Sк = 0,566 руб/кг.

Ен – нормативный коэффициент эффективности капитальных вложений, Ен = 0,15.

Смех = 0,188 + 0,15·0,566 = 0,273 руб/кг.

Это значение принимаем для обоих методов получения заготовки.

Стоимость заготовки, полученной методом проката:


Технологический процесс изготовления вала насоса , (2.5.)


где М – затраты на материал заготовки, руб


Технологический процесс изготовления вала насоса, (2.6.)


где Q –масса заготовки, кг;

S –цена 1 кг материала заготовки, руб;

q – масса готовой детали, кг;

Технологический процесс изготовления вала насоса

где SСо.з. – технологическая себестоимость операций правки, калибрования прутков, разрезки их на штучные заготовки:


Технологический процесс изготовления вала насоса, (2.6.)


где Сп.з. – приведенные затраты на рабочем месте, руб/ч;

Тшт(ш-к) – штучное или штучно-калькуляционное время выполнения заготовительной операции (правки, калибрования, резки и др.).


Технологический процесс изготовления вала насоса


Подставим рассчитанные значения в формулу (2.)


Технологический процесс изготовления вала насоса


Стоимость заготовки, полученной методом ковки на ГКМ с достаточной для стадии проектирования точностью можно определить по формуле:


Сзаг = Сi/1000 Ч kт Ч kcЧ kвЧ kмЧ kп, (2.5.)


где Сi - базовая стоимость одного 1 т поковки, полученной на ГКМ, руб.:

Сi = 0,725 руб;

kт – коэффициент, зависящий от класса точности, для поковок нормального класса точности:

kт = 1;

kc – коэффициент, зависящий от группы сложности поковки, для третьей группы сложности:

kc =1,0;

kв – коэффициент, зависящий от марки материала и массы поковки, для стали 40Х при массе поковки менее 10 кг:

kв =0,8;

kм – коэффициент, зависящий от марки материала поковки, для стали 30ХМ:

kм = 1;

kп – коэффициент, зависящий от объема производства поковок и группы серийности:

kп = 1;

Подставим определенные значения в формулу (2.5.):


Сзаг = Сi/1000 Ч kт Ч kcЧ kвЧ kмЧ kп


Подставим полученные данные в формулу (2.3) и рассчитаем технологическую себестоимость изготовления детали, для двух методов получения заготовки:

-для проката:

Стд1 = 0,29Ч3,12+ 0,273 Ч (3,12-2,2) - 0,0144Ч(3,12-2,2)= 1,143 руб.;

- для штамповки на ГКМ:

Стд2 = 0,821Ч2,64+ 0,273 Ч (2,64-2,2) – 0,0144Ч(2,64-2,2) = 2,281 руб.

Расчеты проведены в ценах 1985 года. Для учета ценовой инфляции введем коэффициент К = 10000. Тогда стоимость заготовки:

-для литья в земляные формы Сзаг1=0,298Ч10000=2980 руб;

-для литья в оболочковые формы Сзаг2=0,821Ч10000=8210 руб.

Полная себестоимость с учетом коэффициента инфляции составит:

-для литья в земляные формы Стд1=11430 руб;

-для литья в оболочковые формы Стд2=22810 руб.

Вывод: по результатам проведения сравнительного анализа технологической себестоимости двух методов получения отливки можно заключить, что экономически целесообразнее использовать при получении заготовки детали метод ковки на горизонтально-ковочной машине, т.к. полная себестоимость получения заготовки этим методом существенно ниже чем методом отрезки сортового проката.

Экономический эффект при изготовлении детали из заготовки полученной ковкой на ГКМ, по сравнению с изготовлением детали резкой сортового проката для годовой программы выпуска-15000 шт. составит:

Э=(Стд2 - Стд1)·N= (22810-11430)·15000=170700000руб.


3. Технологический маршрут и план изготовления детали


3.1 Обоснование технологического маршрута изготовления детали. План изготовления детали


Задача раздела - разработать оптимальный технологический маршрут, т.е. такую последовательность операций, которая обеспечит получение из заготовки готовой детали с наименьшими затратами, при этом необходимо разработать такую схему базирования заготовки на каждой операции, которая обеспечила бы минимальную погрешность обработки.

Тип производства – среднесерийное;

Способ получения исходной заготовки – штамповка на ГКМ;

Метод достижения точности – по настроенному оборудованию.

На рисунке 1.1. представлена схема кодирования детали, т.е. изображен эскиз детали с пронумерованными поверхностями и буквенными обозначениями чертежных размеров.

Технологический маршрут, выбранный в соответствии рекомендациям [Выбор маршрутов обработки поверхностей деталей машин. Сост. Михайлов А. В., Пашко Н. М.] представлен в таблице 3.1:


Таблица 3.1 Технологический маршрут изготовления детали

№ операции Наименование операции

Оборудование

(тип, модель)

Содержание операции

Точ-ность

(IT)

Ra,

мкм

000 Заготовительная Горизонтально-ковочная машина

15

16

32
005 Фрезерно-центровальная Фрезерно-центровальный п/а МР-71М переход1: фрезеровать торцы 1,17

12


10



переход 2:

сверлить центровые отверстия 47 и 48



010 Токарная Токарно-винторезный станок 16Б16П

Установ А

точить пов. 13,46,11,8.

12 12,5



Установ Б

точить пов. 2, 3,4,6

12 12,5
015 Токарная Токарно-винторезный станок 16Б16П

Установ А

точить точить пов. 13,46,11,8.

10 6,3



Установ Б

точить пов. 2, 3,4,6

10 6,3
020 Токарная с ЧПУ Токарно-винторезный станок 16К20Ф3

Установ А

точить пов. 17,13,12,11,10,9,8,7, 3…6, фаски, уклоны и канавки

8 2,5
025 Токарная Токарно-винторезный станок 1А616П Установ А: переход1: сверлить отв. 38, 11 6,3



переход 2: зенкеровать пов. 38,40,41, 9 2,5



переход 3: нарезать резьбу пов.39 7 ст. 2,5



Установ Б:

сверлить отв. 28

11 10
030 Сверлильно-фрезерная

Сверлильно-фрезерно-расточной станок

2254ВМФ4

Установ А

переход 1: сверлить 14 отв. пов.22

12 10



переход 2: зенкеровать 14 отв.22 10 5



переход 3: нарезать резьбу в отв.22 7 ст. 2,5



переход 4: сверлить 7 отв. 33 и отв 26 10 10



переход 5: фрезеровать 7 отв. 33 и отв 26 7 5
035 Фрезерная Специальный консольно-фрезерный станок ГФ-792 переход 1: фрезеровать шпон. паз (пов. 14,15,16) 10 10



переход 2: фрезеровать шпон. паз (пов. 14,15,16) 8 5



переход 3:

сверлить отв.35

12 10



переход 4:

сверлить отв.47

12 10
040 Термическая Печь индукционная Закалить, отпустить, пов. 24,40,41 защитить от окалины +1 на все поверхности кроме 24,40, 41
045 Очистная
Очистить от окалины

050 Плоскошлифовальная Плоскошлифовальный станок 3П756Л Шлифовать торец 1 10 2,5
055 Круглошлифовальная Круглошлифовальный станок 3М150

Шлифовать пов. 13

8 и 6, торец 5

7 1,25
060 Круглошлифовальная Круглошлифовальный станок 3М150

Шлифовать пов. 13

8 и 6

5 0,63
065 Токарная Токарно-винторезный станок 1А616П Установ А Полировать пов. 11 - 0,32



Установ Б Притереть пов. 33 и 26 - 0,16
075 Слесарная Верстак слесарный Притупить острые кромки, маркировать электрографом согл. ТТ - -
080 Моечная Моечная машина
- -
085 Азотирование Печь для азотирования согл. ТТ - -
090 Контрольная - - - -

План изготовления детали

План изготовления – графическое изображение технологического маршрута с указанием теоретических схем базирования и технических требований на операции.

План изготовления состоит из четырех граф:

Графа "Операция", которая включает в себя название и номер операции.

Графа “ Оборудование”, которая включает в себя оборудование, при помощи которого производится обработка поверхностей на данной операции.

Графа "Операционный эскиз", которая включает в себя изображение детали, схему базирования (точки закрепления), простановку операционных размеров, обозначение обрабатываемых поверхностей и указание шероховатости получаемой на данной операции.

Графа “Технические требования”, которая включает в себя допуски на операционные размеры и отклонения формы.

План изготовления корпуса внутреннего шарнира представлен на листе 05.М15.269.08. графической части.


3.2 Выбор технологических баз


Теоретическая схема базирования представлена на плане изготовления детали и представляет собой схему расположения на технологических базах заготовки "идеальных" точек, символизирующих позиционные связи заготовки с принятой схемой координат станочного приспособления.

При разработке схем базирования учитываем принцип и единства баз: на всех операциях обработки по возможности использовать одну и ту же базу, как установочную, так и измерительную и принцип постоянства баз: на всех операциях обработки необходимо применять по возможности одни и те же базы. Также важно учитывать правило шести точек, при котором деталь базируется на шести неподвижных точках, которые лишают её шести степеней свободы. Обработку детали начинаем с поверхности, которая служит опорной базой для дальнейших операций. Для обработки этой поверхности в качестве опорной базы приходится принимать необработанную поверхность. После этого, когда она обработана, обрабатываем остальные поверхности, соблюдая при этом определённую последовательность, сначала обрабатываем поверхность, к точности которой предъявляются меньшие требования, а потом поверхности, которые должны быть более точными.

Операции согласно типовому технологическому процессу изготовления разбиваем на установы. Индекс около номера поверхности обозначает номер операции, на которой она получена. Индекс 00 – относится к заготовительной операции, буквы А, Б – указывают, что поверхность обработана на данной операции с установа А или Б. Арабские цифры 1,2,3 и т.д. обозначают переход на котором был получен данный размер.

В связи с тем, что вал представляет собой тело вращения, первоначально заготовка обрабатывается на станках токарной группы.

На 005 фрезерно-центровальной операции в качестве черновых технологических баз используем технологические базы, указанные на чертеже заготовки (см. чертеж 05.М15.269.15) ими являются цилиндрическая поверхность 6 и торцовая поверхность 5. Ось материализуем наружными цилиндрическими поверхностями.

На 010 и 015 токарных операциях и на 020 токарной операции с ЧПУ на установе А в качестве двойной направляющей базы используем ось поверхности 2, в качестве опорной базы торец 1; на установе Б – в качестве двойной опорной базы используем ось поверхности 13, в качестве опорной базы торец 17. В качестве опорной базы принимаем, в зависимости от установа, пов.2 и 13 соответственно.

На 025 сверлильной на установе А в качестве двойной направляющей базы используем ось поверхности 2, в качестве опорной базы торец 1; на установе Б – в качестве двойной направляющей базы используем ось поверхности 13, в качестве опорной базы торец 5. В качестве опорной базы принимаем, в зависимости от установа, пов.2 и 13 соответственно.

На 030 сверлильно-фрезерной, 050 плоскошлифовальной, 065 полировальной операциях в качестве направляющей базы используем ось поверхности 8, в качестве установочной базы торец 17, в качестве опорной базы принимаем пов.8.

На 035 фрезерной операции на в качестве двойной направляющей базы используем ось поверхности 6, в качестве опорных баз торец 1 и цилиндрическую поверхность

На 055 и 060 круглошлифовальных операциях двойной направляющей базой является ось. Поверхности 17 и 27, использующиеся для простановки в них специальных центров используются в качестве опорных баз.


Сведем все данные по технологическим базам и размерам получаемым на операциях ТП в таблицу 3.2.


Таблица 3.2 Технологические базы

№ операции Название № опорных точек Характер появления

Реализация

Операционные размеры Единство баз



Явная Скрытая Естественная Искусственная


005

ДН

О

О

1,2,3,4

5

6

+

-

+

-

+

-

+

+

+

-

-

-

2Б10-А, 2Ж10-Б


Z10-A, Э10-А, Э10-Б

+

-



020

У

ДО

О

1,2,3

4,5

6

+

-

+

-

+

-

+

+

+

-

-

-

2Б20-Б, 2Ж20-А,

ДЮ20-А, 2J20-Б

Z20-Б, Э20-Б

F20-Б, G20-A

+

-


030

У

ДО

О

1,2,3

4,5

6

+

-

+

-

+

-

+

+

+

-

-

-

2Ж30-А, 2Б30-Б

Z30-Б

+

-

040

У

ДО

О

1,2,3

4,5

6

+

-

+

-

+

-

+

+

+

-

-

-

2М40-1, 2И40-4 , 2Т40-3, 2Т40-2,

2ХХ40

СК20-А, Z20-Б,

+


-

050

У

ДО

О

1,2,3

4,5

6

+

-

+

-

+

-

+

+

+

-

-

-

V50-Б, 2Д50-Б, Е50-А,

2Ф50-А, 2Щ50-А, 2Г50-А,2Н50,2П50

ИЬ50-А,МИ50, КК50 , МХ50

+


-

060

У

ДО

О

1,2,3

4,5

6

+

-

+

-

+

-

+

+

+

-

-

-

2Х60, 2Ш60, Ъ60

БЛ60, СЕ60

+

-


3.3 Обоснование простановки операционных размеров


Способ простановки операционных размеров выбираем в зависимости от метода достижения точности. Для выполнения выше рассмотренных операций применяем метод достижения точности размеров с помощью настроенного оборудования. В этом случае имеет место несколько вариантов простановки операционных размеров, получение которых зависит от технологических возможностей применяемого оборудования. Так как

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: