Xreferat.com » Рефераты по психологии » Основы психофизиологии

Основы психофизиологии

1. История, предмет, задачи


Психофизиология — научная дисциплина, возникшая на стыке психологии и физиологии, предметом ее изучения являются физиологические основы психической деятельности и поведения человека (животного). Естественно-научная ветвь психологического знания. Поведение оказывается независимой переменной, тогда как зависимой переменной являются физиологические процессы.

Психофизиология - наука не только о физиологических, но и о нейронных механизмах психических процессов, состояний и поведения. Включает исследование нейрона и нейронных сетей.

Становление психофизиологии как одной из ветвей нейронауки связано с успехами, достигнутыми в области изучения нейронной активности.

- 20-е годы, Англия, школа электрофизиологов во главе с А. Эдрианом. Большой вклад в изучение электрической активности нейронов и в общую теорию ЭЭГ.

- Теория нервных сетей, сформулированная У. Мак Каллахом и У. Питсом. Описан детектор - особый тип нейронов сетчатки, избирательно реагирующих на некоторые физические свойства зрительных стимулов.

- 60-е годы, работы Д. Хьюбела и Т. Визеля, сформулировали модульный принцип организации нейронов коры больших полушарий, показав существование «колонок» — объединения нейронов в группы со сходными функциональными свойствами.

- Ю. Конорский – гностические единицы (особый тип сенсорных нейронов, кодирующие целостные образы). Узнаванию знакомого лица, предмета с первого взгляда, голоса по первому слову, запаха, жеста и т.п. соответствует возбуждение не клеточного ансамбля, а единичных нейронов, отвечающих отдельным восприятиям.

Нейроны цели - избирательно реагируют на появление целевого объекта: на вид или запах пищи. Найдены в гипоталамусе, височной коре, хвостатом ядре.

Нейроны целевых движений у кролика были описаны В. Б. Швырковым. Их активация предшествует акту хватания пищи либо нажиму на педаль, за которым следует подача кормушки с пищей.

Нейроны моторных программ (А. С. Батуев) в лобной и теменной коре. Активация отдельных групп этих нейронов предшествует выполнению различных фрагментов сложного инструментального двигательного рефлекса, обеспечивающего получение пищевого подкрепления. Изучена функция многих командных нейронов, запускающих определенные двигательные акты.

К.В. Судаков, нейроны, которые реагируют на тоническое мотивационное возбуждение - нейроны «ожидания». При пищевом возбуждении, возникающем естественным путем или в результате электрического раздражения «центра голода», расположенного в латеральном гипоталамусе, эти нейроны разряжаются пачками спайков. С удовлетворением пищевой потребности пачечный тип активности заменяется одиночными спайками.

Нейроны новизны, активирующиеся при действии новых стимулов и снижающие свою активность по мере привыкания к ним, обнаружены в гиппокампе, неспецифическом таламусе, ретикулярной формации среднего мозга и других структурах. В гиппокампе найдены также нейроны тождества, опознающие знакомые (многократно повторяющиеся) стимулы. В.Б. Швырковым выделена группа нейронов поискового поведения, которые становятся активными только во время ориентировочно-исследовательского поведения кролика.

Особую группу составляют нейроны среды, избирательно возбуждающиеся при нахождении животного в определенной части клетки. Нейроны среды найдены Ю.И. Александровым в моторной, соматосенсорной и зрительной коре у кролика. Нейроны среды в коре сходны с нейронами места, найденными О'Кифом в гиппокампе кролика. Нейроны места также активируются лишь при определенном расположении животного в экспериментальном пространстве.

Выделенные группы нейронов заложили основу функциональной классификации нейронов и позволили приблизиться к пониманию нейронных механизмов поведения.


2. Понятие сенсорной системы


Сенсорной системой (анализатором, по И. П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов — сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее. Работа любой сенсорной системы начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов. Процесс передачи сенсорных сигналов сопровождается многократным их преобразованием и перекодированием и завершается высшим анализом и синтезом (опознанием образа), после чего формируется ответная реакция организма.

Информация, поступающая в мозг, необходима для простых и сложных рефлекторных актов вплоть до психической деятельности человека. И. М. Сеченов писал, что «психический акт не может явиться в сознании без внешнего чувственного возбуждения». Переработка сенсорной информации может сопровождаться, но может и не сопровождаться осознанием стимула. Если осознание происходит, говорят об ощущении. Понимание ощущения приводит к восприятию.

И. П. Павлов считал анализатором совокупность рецепторов {периферический отдел анализатора), путей проведения возбуждения (проводниковый отдел), а также нейронов, анализирующих раздражитель в коре мозга (центральный отдел анализатора).


3. Кодирование информации


Одним из простых способов кодирования информации признается специфичность рецепторов, избирательно реагирующих на определенные параметры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др. В работах Т. Буллока (1965) и В. Маунткастла (1967) принцип специфичности получил дальнейшее развитие. Они предложили говорить о меченой линии как о моносинаптической передаче сигналов от рецептора к некоторому центральному нейрону, возбуждение которого соответствует выделению определенного качества стимула.

Модель меченой линии более подходит к чувствительным окончаниям кожи, которые высокоспецифичны относительно небольшого количества типов раздражений (рецепторы давления, прикосновения, температуры, боли). Это соответственно требует малого числа меченых линий.

Частотный код. Наиболее явно он связан с кодированием интенсивности раздражения. Для многих периферических нервных волокон была установлена логарифмическая зависимость между интенсивностью раздражителя и частотой вызываемых им ПД. Она выявлена для частоты импульсов в одиночном волокне зрительного нерва, идущего от одного омматидия мечехвоста (Limulus), и интенсивности света; для частоты спайков веретена — рецептора мышцы лягушки и величины нагрузки на мышцу. Частотный способ кодирования информации об интенсивности стимула, включающего операцию логарифмирования, согласуется с психофизическим законом Г. Фехнера о том, что величина ощущения пропорциональна логарифму интенсивности раздражителя.

С. Стивене на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции - ощущение пропорционально показателю степени стимула.

В качестве альтернативного механизма к первым двум принципам кодирования — меченой линии и частотного кода — рассматривают также паттерн ответа нейрона (структурную организацию ПД во времени). Отличительная черта нейронов специфической системы мозга - устойчивость временного паттерна ответа. Система передачи информации о стимулах с помощью рисунка разрядов нейрона имеет ряд ограничений. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно зависит от состояния нейрона, что делает данную систему кодирования недостаточно надежной.

Д. Хебб считает, что ни один нейрон не может пересылать никакой информации другим нейронам и что она передается исключительно через возбуждение группы нейронов, входящих в состав соответствующих ансамблей. Д. Хебб предложил рассматривать ансамбль нейронов в качестве основного способа кодирования и передачи информации. Различные наборы возбужденных нейронов одного и того же ансамбля соответствуют разным параметрам стимула, а если ансамбль находится на выходе системы, управляющей движением, — то и разным реакциям. Преимущества: более надежен, так как не зависит от состояния одного нейрона, не требует дополнительно ни операций, ни времени. Однако для кодирования каждого типа стимулов необходим свой уникальный набор нейронов.

Особый принцип обработки информации вытекает из детекторной теории. Принцип кодирования информаиии номером детектора (детекторного канала). Передача информаии по номеру канала (термин предложен Е.Н. Соколовым) означает, что сигнал следует по цепочке нейронов, конечное звено которой представлено нейроном-детектором простых или сложных признаков, избирательно реагирующим на определенный физический признак или их комплекс.

Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Раздражение определенного участка кожи вызывало очаг возбуждения в определенном локусе соматосенсорной коры. Пространственное соответствие места приложения стимула и локуса возбуждения в коре получило подтверждение и в других анализаторах: зрительном, слуховом. Тонотопическая проекция в слуховой коре отражает пространственное расположение волосковых клеток кортиевого органа, избирательно чувствительных к различной частоте звуковых колебаний. Такого рода проекции можно объяснить тем, что рецепторная поверхность отображается на карте коры посредством множества параллельных каналов — линий, имеющих свои номера. При смещении сигнала относительно рецепторной поверхности максимум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избирательно отвечающий на раздражение определенного участка рецепторной поверхности. Детекторы локальности, обладающие точечными рецептивными полями и избирательно реагирующие на прикосновение к определенной точке кожи, являются наиболее простыми детекторами. Совокупность детекторов локальности образует карту кожной поверхности в коре. Детекторы работают параллельно, каждая точка кожной поверхности представлена независимым детектором.

Е.Н. Соколов предложил механизм векторного кодирования сигнала, когда стимулы различаются не местом приложения, а другими признаками. Появление локуса возбуждения на детекторной карте зависит от параметров стимула. С их изменением локус возбуждения на карте смещается.

Принцип векторного кодирования информации впервые был сформулирован в 50-х годах шведским ученым Г. Йохансоном, который положил начало новому направлению в психологии — векторной психологии. Основывался на результатах изучения восприятия движения. Он показал, что если две точки на экране движутся навстречу друг другу — одна по горизонтали, другая по вертикали, — то человек видит движение одной точки по наклонной прямой. Для объяснения эффекта иллюзии движения Г. Йохансон использовал векторное представление. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигательных и вегетативных реакций.

Векторная психофизиология — новое направление, ориентированное на соединение психологических явлений и процессов с векторным кодированием информации в нейронных сетях.

Особенности кодирования в сенсорных системах.

1. в отличие от телефонных или телевизионных кодов, которые декодируются восстановлением первоначального сообщения в исходном виде, в сенсорной системе такого декодирования не происходит.

2. множественность и перекрытие кодов. Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система использует несколько кодов: частотой и числом импульсов в пачке, числом возбужденных нейронов и их локализацией в слое. В коре большого мозга сигналы кодируются последовательностью включения параллельно работающих нейронных каналов, синхронностью ритмических импульсных разрядов, изменением их числа.

3. позиционное кодирование (в коре). Оно заключается в том, что какой-то признак раздражителя вызывает возбуждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя. Например, возбуждение небольшой локальной группы нейронов зрительной области коры означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.

Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход к преимущественно пространственному (в основном позиционному) коду.


4. Адаптация сенсорной системы


Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сенсорная адаптация — общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды).

Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Адаптация слаба только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленно адаптирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые эту информацию передают в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается.

В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозной характер, т. е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов. Общее число эфферентных нервных волокон, приходящих к рецепторам или элементам какого-либо нейронного слоя сенсорной системы, как правило, во много раз меньше числа афферентных нейронов, приходящих к тому же слою. Это определяет важную особенность эфферентного контроля в сенсорных системах: его широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части нижележащего нейронного слоя.


5. Взаимодействие сенсорных систем


Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего порядка. В результате образования множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности. Это особенно свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кроссмодальное) взаимодействие на корковом уровне создает условия для формирования «схемы (или карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.


6. Основные функции сенсорной системы


Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов — нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

1. Обнаружение сигналов. Оно начинается в рецепторе — специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.

2. Различение сигналов. Важная характеристика сенсорной системы — способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог).

3. Передача и преобразование сигналов. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа. Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований выделяют изменения соотношения разных частей сигнала.

4. Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму — код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Информация о раздражении и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов). Амплитуда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужденных нейронов, а также местом возбуждения в нейронном слое.

5. Детектирование сигналов. Это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула. Так, типичный нейрон зрительной области коры отвечает разрядом лишь на одну определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения. При других наклонах той же полоски ответят другие нейроны. В высших отделах сенсорной системы сконцентрированы детекторы сложных признаков и целых образов.

6. Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем. Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.

7. Общие свойства сенсорных систем


Основными свойствами сенсорных систем являются: 1) рецепция раздражителя и формирование рецепторного потенциала действия, 2) формирование потенциала действия сенсорного волокна и его дальнейшее проведение к сенсорным ядрам, 3) перцепция сенсорного сигнала (преобразование, анализ и идентификация свойств) в релейных станциях обработки, 4) классификация и опознание сигнала с целью принятия решения. Большинство функций осуществляется на последовательных уровнях - релейных станциях сенсорных систем и заканчивается в первичных проекционных зонах сенсорного анализатора в коре головного мозга. Идентификация и классификация сигнала происходит с участием вторичных анализаторов и ассоциативных зон мозга. Итогом этого процесса является опознание сигнала для формирования какой-либо реакции целостного организма или отдельных функциональных систем (двигательная, вегетативная, эмоциональная и пр.). Понятие об анализаторах было введено И.П.Павловым в 1909 году как о системе чувствительных образований, воспринимающих и анализирующих разнообразные внешние и внутренние раздражители. Анализатор является структурно-функциональным объединением, включающий периферический аппарат восприятия сигнала, проводящие пути и корковый конец с первичными, вторичными и третичными зонами (полями). Каждая область нервной системы с включенными сенсорными ядрами составляет уровень или релейную станцию переработки сенсорной информации. Кроме ядерных образований, сгруппированных в релейные станции, во всех отделах мозга имеются диффузные клетки, сопровождающие проводящие пути.

Основными функциями сенсорных систем являются рецепция, преобразование рецепторного потенциала в импульсную активность проводников, передача потенциала действия сенсорного волокна к сенсорным ядрам и дальнейшая обработка этого потока (преобразование и анализ свойств сигнала, идентификация). В последнюю очередь происходит классификация и опознавание сигнала с принятием решения. Большинство сенсорных функций осуществляется на последовательных уровнях сенсорных систем и завершается в первичных проекционных зонах коры головного мозга.

Таким образом, реализуются основные эффекты акупунктуры. Идентификация и классификация сигнала требуют участия вторичных анализаторных и ассоциативных зон мозга и связаны с синтезом сведений о сигнале.


8. Основные методы в психофизиологии


1.Вегетативные реакции: изменения проводимости кожи, сосудистые реакции, частота сердечных сокращений, артериальное давление и др. Не относится к прямым методам измерения информационных процессов мозга (слишком медленно протекают и с задержкой, слишком тесно связаны с изменением функциональных состояний и эмоций).

2. Регистрация электрической активности мышц — электро-миограмма (ЭМГ), отличает высокая подвижность. С высокой степенью точности можно идентифицировать различные эмоциональные состояния.

3. Электроэнцефалография. Спонтанная электрическая активность мозга характеризуется специфическими ритмами определенной частоты и амплитуды и одновременно может быть записана от многих участков черепа. ЭЭГ отражает колебания во времени разности потенциалов между двумя электродами. Рисунок ЭЭГ меняется с переходом ко сну и с изменениями функционального состояния в бодрствовании, во время эпилептического припадка. ЭЭГ удобно использовать для выявления случаев с потерей сознания.

4. Вызванные потенциалы и потенциалы, связанные с событиями. Сенсорные стимулы вызывают изменения в суммарной электрической активности мозга, которые выглядят как последовательность из нескольких позитивных и негативных волн, которая длится в течение 0,5—1 с после стимула. Этот ответ получил название вызванного потенциала.

Стволовые потенциалы — высокочувствительный инструмент для тестирования слуховой функции. Значение этого теста возрастает в связи с тем фактом, что даже незначительная потеря слуха в раннем детстве может привести к существенной задержке развития речи. Стволовые звуковые потенциалы применяют также в клинике для выявления опухолей, определения коматозного состояния. Если стволовые потенциалы полностью отсутствуют, можно говорить о смерти мозга.

5. Метод картирования биотоков мозга. Дает представление о пространственном распределении по коре любого выбранного показателя электрической активности мозга.

6. Магнитоэнцефалография. Бесконтактный метод регистрации. МЭГ не испытывает искажений от кожи, подкожной жировой клетчатки, костей черепа, твердой мозговой оболочки, крови и др., так как магнитная проницаемость для воздуха и для тканей примерно одинакова. В МЭГ отражаются только источники активности, которые расположены тангенциально (параллельно черепу), так как МЭГ не реагирует на радиально ориентированные источники, т.е. расположенные перпендикулярно поверхности. Благодаря этим свойствам МЭГ позволяет определять локализацию только корковых диполей, тогда как в ЭЭГ суммируются сигналы от всех источников независимо от их ориентации, что затрудняет их разделение. МЭГ не требует индифферентного электрода и снимает проблему выбора места для реально неактивного отведения. Для МЭГ, так же как и для ЭЭГ, существует проблема увеличения соотношения «сигнал-шум», поэтому усреднение ответов также необходимо. Из-за различной чувствительности ЭЭГ и МЭГ к источникам активности особенно полезно комбинированное их использование.

7. Измерение локального мозгового кровотока. Мозговая ткань не имеет собственных энергетических ресурсов и зависит от непосредственного притока кислорода и глюкозы, поставляемых через кровь. Поэтому увеличение локального кровотока может быть использовано в качестве косвенного признака локальной мозговой активации. Он основан на измерении скорости вымывания из ткани мозга изотопов ксенона или криптона (изотопный клиренс) или же атомов водорода (водородный клиренс). Скорость вымывания радиоактивной метки прямо связана с интенсивностью кровотока. Чем интенсивнее кровоток в данном участке мозга, тем быстрее в нем будет накапливаться содержание радиоактивной метки и быстрее происходить ее вымывание. Регистрация метки производится с помощью многоканальной гамма-камеры. Используют шлем со специальными сцинтилляцион-ными датчиками (до 254 штук). Изотоп вводят в кровяное русло через сонную артерию. Недостаток этого метода состоит в том, что можно исследовать только одно полушарие, которое связано с той сонной артерией, в которую сделана инъекция. Кроме того, не все области коры снабжаются кровью через сонные артерии.

Более широкое распространение получил неинвазивный способ измерения локального кровотока, когда изотоп вводят через дыхательные пути. Человек в течение 1 мин вдыхает очень малое количество инертного газа, а затем дышит нормальным воздухом. Через дыхательную систему изотоп попадает в кровяное русло и достигает мозга. Метка уходит из мозговой ткани через венозную кровь, возвращается к легким и выдыхается. Скорость вымывания изотопа в различных точках поверхности полушарий преобразуется в значения локального кровотока и представляется в виде карты метаболической активности мозга. В отличие от инвазивного метода в этом случае метка распространяется на оба полушария.

При измерении водородного клиренса в мозг вживляют ряд металлических электродов для регистрации сдвига электрохимического потенциала, который создается подкислением тканей ионами водорода. По его уровню судят об активности локального участка мозга. Этот метод на человеке применяют в медицинских целях: для уточнения клинического диагноза при опухолях, инсультах, травмах.

8. Томографические методы исследования мозга. Получение срезов мозга искусственным путем. Для построения срезов используют либо просвечивание, например, рентгеновскими лучами, либо излучение от мозга, исходящее от изотопов, введенных предварительно в мозг. Последний принцип используется в позитронно-эмиссионной томографии (ПЭТ).

9. Метод магнитно-резонансной томографии. Получения карты структур мозга на основе контраста белого и серого вещества.

10. Термоэнцефалоскопия. Измеряют локальный метаболизм мозга и кровоток по теплопродукции. Мозг излучает тега-лучи в инфракрасном диапазоне. Инфракрасное излучение мозга улавливается на расстоянии от нескольких сантиметров до метра термовизором с автоматической системой сканирования. Сигналы попадают на точечные датчики. Каждая термокарта содержит 10—16 тысяч дискретных точек, образующих матрицу 128x85 или 128х 128 точек. Процедура измерений в одной точке длится 2,4 мкс. В работающем мозге температура отдельных участков непрерывно меняется. Построение термокарты дает временной срез метаболической активности мозга.

Индикаторы активности сердечно-сосудистой системы включают:

ритм сердца (РС) — частоту сердечных сокращений (ЧСС);

силу сокращений сердца — силу, с которой сердце накачивает кровь;

минутный объем сердца — количество крови, проталкиваемое сердцем в одну минуту; артериальное давление (АД);

региональный кровоток — показатели локального распределения крови. Для измерения мозгового кровотока получили распространение методы томографии и реографии.


9. Механизмы управления движением


Двигательная активность человека имеет очень широкий диапазон - от мышечных координаций, требуемых для грубой ручной работы или перемещения всего тела в пространстве, до тонких движений пальцев при операциях, которые выполняются под микроскопом. Обеспечение всех видов двигательной активности осуществляется на основе движения двух потоков информации. Один поток берет начало на периферии: в чувствительных элементах (рецепторах), которые находятся в мышцах, суставных сумках, сухожильных органах. Через задние рога спинного мозга эти сигналы поступают вверх по спинному мозгу и далее в разные отделы головного мозга.

Взятые в совокупности сигналы от перечисленных структур образуют особый вид чувствительности — проприорецепцию. Хотя в сознании человека эта информация не отражается, благодаря ей мозг в каждый текущий момент времени имеет полное представление о том, в каком состоянии находятся все его многочисленные мышцы и суставы. Эта информация формируют схему, или образ, тела. Не имея такого интегрального образования, человек не мог бы планировать и осуществлять ни одно движение. Схема тела — исходное основание для реализации любой двигательной программы. Ее планирование, построение и исполнение связано с деятельностью двигательной системы.

В двигательной системе основной поток информации направлен от двигательной зоны коры больших полушарий — главного центра произвольного управления движениями — к периферии, т.е. к мышцам и другими органам опорно-двигательного аппарата, которые и осуществляют движение.

Структуры, отвечающие за нервную регуляцию положения тела в пространстве и движений, находятся в разных отделах ЦНС — от спинного мозга до коры больших полушарий. В их расположении прослеживается четкая иерархия, отражающая постепенное совершенствование двигательных функций в процессе эволюции.

Строение двигательной системы

Существуют два основных вида двигательных функций: поддержание положения (позы) и собственно движение. В повседневной двигательной активности разделить их достаточно сложно. Движения без одновременного удержания позы столь же невозможны, как удержание позы без движения. (см. рис.)

Структуры, отвечающие за нервную регуляцию позы и движений, находятся в разных отделах ЦНС — от спинного мозга до коры больших полушарий. В их расположении прослеживается четкая иерархия, отражающая постепенное совершенствование двигательных функций в процессе эволюции.

Самый низший уровень в организации движения связан с двигательными системами спинного мозга. В спинном мозге между чувствительными нейронами и мотонейронами, которые прямо управляют мышцами, располагаются вставочные нейроны, образующие множество контактов с другими нервными клетками. От возбуждения вставочных нейронов зависит, будет ли то или иное движение облегчено или заторможено. Нейронные цепи, или рефлекторные дуги, лежащие в основе спинальных рефлексов, — это анатомические образования, обеспечивающие простейшие двигательные функции. Однако их деятельность в значительной степени зависит от регулирующих влияний выше расположенных центров.

Высшие двигательные центры находятся в головном мозге и обеспечивают построение и регуляцию движений. Двигательные акты, направленные на поддержание позы, и их координация с целенаправленными движениями осуществляется в основном структурами ствола мозга, в то же время сами целенаправленные движения требуют участия высших нервных центров. Побуждение к действию, связанное с возбуждением подкорковых мотивационных центров и ассоциативных зон коры, формирует программу действия. Образование этой программы осуществляется с участием базальных ганглиев и мозжечка, действующих на двигательную кору через ядра таламуса (см. Видео). Причем мозжечок играет первостепенную роль в регуляции позы и движений, а базальные ганглии представляют собой связующее звено между ассоциативными и двигательными областями коры больших полушарий.

Моторная, или двигательная, кора расположена непосредственно кпереди от центральной борозды. В этой зоне мышцы тела представлены топографически, т.е. каждой мышце соответствует свой участок области. Причем мышцы левой половины тела представлены в правом полушарии, и наоборот.

Двигательные пути, идущие от головного мозга к спинному, делятся на две системы: пирамидную и экстрапирамидную. Начинаясь в моторной и сенсомотрной зонах коры больших полушарий, большая часть волокон пирамидного тракта направляется прямо к эфферентным нейронам в передних рогах спинного мозга. Экстрапирамидный тракт, также идущий к передним рогам спинного мозга, передает им эфферентную импульсацию, обработанную в комплексе подкорковых структур (базальных ганглиях, таламусе, мозжечке).


10. Двигательный анализатор


Двигательный анализатор, совокупность чувствительных нервных образований, воспринимающих, анализирующих и синтезирующих импульсы, идущие от мышечно-суставного аппарата. Термин введён И. П. Павловым. Д. а., как и другие анализаторы, состоит из цепи нервных клеток, начинающейся с рецепторов сухожилий, суставов и др. проприорецепторов и кончающейся группами нервных клеток в коре больших полушарий головного мозга. От проприорецепторов импульсы идут к первым нейронам Д. а., находящимся в межпозвонковых нервных узлах, далее — в спинной мозг и по его задним столбам — в продолговатый мозг, где расположены вторые нейроны Д. а. Волокна, выходящие из ядер продолговатого мозга, переходят на противоположную сторону, образуя перекрест, подымаются к зрительным буграм, где расположены третьи нейроны, и достигают коры головного мозга. Помимо этого пути, сигналы от опорно-двигательного аппарата могут достигать коры головного мозга и через ретикулярную формацию и мозжечок. Д. а. принадлежит ведущая роль в формировании и проявлении движений, он играет существенную роль в высшей нервной деятельности.

Анализатор человека — подсистема центральной нервной системы, обеспечивающая приём и первичный анализ информации. Периферийная часть анализатора — рецептор, центральная часть анализатора — мозг.

Проприорецепторы (собственный, особенный, своеобразный и receptor — укрыватель) — концевые образования чувствительных нервных волокон в скелетных мышцах, связках, суставных сумках; раздражаются при сокращении, напряжении или растягивании мышц; воспринимают информацию о положении тел в пространстве, обеспечивают кинестетические ощущения.

Ретикулярная формация, сетевидное образование, совокупность нервных структур, расположенных в центральных отделах стволовой части мозга (продолговатом и среднем мозге, зрительных буграх).

Мозжечок, отдел головного мозга позвоночных животных и человека, участвующий в координации движений и сохранении позы, тонуса и равновесия тела; функционально связан также с регуляцией вегетативной, сенсорной, адаптационно-трофической и условнорефлекторной деятельности организма.


11. Зрительная система


Зрительная система дает мозгу более 90% сенсорной информации. Зрение — многозвеньевой процесс, начинающийся с проекции изображения на сетчатку уникального периферического оптического прибора — глаза. Затем происходят возбуждение фоторецепторов, передача и преобразование зрительной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корковыми отделами этой системы решения о зрительном образе.

Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект. На пути к светочувствительной оболочке глаза (сетчатке) лучи света проходят через несколько прозрачных сред — роговицу, хрусталик и стекловидное тело. Определенная кривизна и показатель преломления роговицы и в меньшей мере хрусталика определяют преломление световых лучей внутри глаза.

Преломляющую силу любой оптической системы выражают в диоптриях (D). На сетчатке получается изображение, резко уменьшенное и перевернутое вверх ногами и

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: