Xreferat.com » Рефераты по радиоэлектронике » Физические основы электроники

Физические основы электроники

Рисунок 3.5 Входные (а) и выходные (б) характеристики БТ в схеме включения с ОЭ

прямое включение эмиттерного перехода, так как UЭБ = -UБЭ > 0. Если при этом UКЭ = 0 (потенциалы коллектора и эмиттера одинаковы), то и коллекторный переход бу­дет включен в прямом направлении: UКБ = UКЭ + UЭБ = UЭБ > 0. Поэто­му входная характеристика при UКЭ = 0 будет соответствовать ре­жиму насыщения (РН), а ток базы равным сумме базовых токов из-за одновременной инжекции дырок из эмиттера и коллектора. Этот ток, естественно, увеличивается с ростом прямого напряже­ния UЭБ, так как оно приводит к усилению инжекции в обоих перехо­дах (UКБ = UЭБ) и соответствующему возрастанию потерь на реком­бинацию, определяющих базовый ток.

Вторая характеристика на рисунке 3.6,а (UКЭ 0) относится к нормальному активному режиму, для получения которого напряжение UКЭ долж­но быть в p-n-p транзисторе отрицательным и по модулю превы­шать напряжение UЭБ. В этом случае (UКБ = UКЭ + UЭБ = UКЭ - UБЭ < 0. Формально ход входной характеристики в НАР можно объяснить с помощью выражения (3.14) или (3.17): IБ =(1 - )IЭ - IКБО. При малом напряжении UБЭ инжекция носителей практически от­сутствует (IЭ = 0) и ток IБ = -IКБО, т.е. отрицателен. Увеличение пря­мого напряжения на эмиттерном переходе UЭБ = -UБЭ вызывает рост IЭ и величины (1 - ) IЭ. Когда (1 - ) IЭ = IКБО, ток IБ = 0. При дальнейшем роете UБЭ (1 - ) IЭ > IКБО и IБ меняет направление и становится положительным (IБ > 0) и сильно зависящим от напря­жения перехода.

Влияние UКЭ на IБ в НАР можно объяснить тем, что рост |UКЭ| означает рост |UКБ| и, следовательно, уменьшение ширины базо­вой области (эффект Эрли). Последнее будет сопровождаться снижением потерь на рекомбинацию, т.е. уменьшением тока базы (смещение характеристики незначительно вниз).

Семейство выходных характеристик схемы с ОЭ предста­вляет собой зависимости IК = f(UКЭ) при заданном параметре IБ (рисунок 3.6,б).

Крутые начальные участки характеристик относятся к режиму насыщения, а участки с малым наклоном - к нормальному актив­ному режиму. Переход от первого режима ко второму, как уже от­мечалось, происходит при значениях |UКЭ|, превышающих |UБЭ|. На характеристиках в качестве параметра берется не напряжение UБЭ, а входной ток IБ. Поэтому о включении эмиттерного перехода приходится судить по значению тока IБ, который связан с входной характеристикой на рисунке 3.6,а. Для увеличения IБ необходимо увеличивать |UБЭ|, следовательно, и граница между режимом на­сыщения и нормальным активным режимом должна сдвигаться в сторону больших значений.

Если параметр IБ = 0 (“обрыв” базы), то в соответствии с (3.22) IК = IКЭО = ( + 1 ) IКБО. В схеме с ОЭ можно получить (как и в схеме с ОБ) I = IКБО, если задать отрицательный ток IБ = -IКБО. Выходная ха­рактеристика с параметром IБ = -IКБО может быть принята за грани­цу между НАР и режимом отсечки (РО). Однако часто за эту грани­цу условно принимают характеристику с параметром IБ = 0.

Наклон выходных характеристик в нормальном активном режи­ме в схеме с общим эмиттером во много раз больше, чем в схеме с общей базой (h22Э h22Б) Объясняется это различным проявлени­ем эффекта Эрли. В схеме с общим эмиттером увеличение UКЭ, а следовательно и UКБ сопровождается уменьшением тока ба­зы, а он по определению выходной характеристики должен быть неизменным. Для восстановления тока базы приходится регули­ровкой напряжения UБЭ увеличивать ток эмиттера, а это вызывает прирост тока коллектора IК, т.е. увеличение выходной проводимо­сти (в схеме с ОБ ток IЭ при снятии выходной характеристики поддерживается неизменным).


3.2.3 Влияние температуры на статические характеристики БТ


Влияние температуры на положение входной характеристики схемы с ОБ при поддержании неизменным ее параметра анало­гично ее влиянию на ВАХ полупроводникового диода. В нормаль­ном активном режиме ток эмиттерного перехода можно предста­вить формулой

.

С ростом температуры тепловой ток IЭО растет быстрее, чем убывает экспонента из-за увеличения Т = kT/q. В резуль­тате противоположного влияния двух факторов входные характери­стики схемы с ОБ смещаются влево при выбранном токе IЭ на вели­чину U (1...2) мВ/°С (рисунок 3.7,а).

Начало входной характеристики в схеме с ОЭ определяется теп­ловым током коллекторного перехода IКБО который сильно зависит от температуры, так что начало характеристики при увеличении тем­пературы опускается (рисунок 3.7, б).


а) б)
Рисунок 3.7 Зависимость входных характеристик от температуры для схем ОБ (а) и ОЭ (б).

Влияние температуры на выходные характеристики схем с ОБ и ОЭ в НАР удобно анализировать по формулам (3.11) и (3.22):

и .

Снятие выходных характеристик при различных температурах должно проводиться при поддержании постоянства параметров (IЭ = const в схеме с ОБ и IБ = const в схеме с ОЭ). Поэтому в схеме с ОБ при IЭ = const рост IК будет определяться только увеличением IКБО (рисунок 3.8, а).

а) б)
Рисунок 3.8 Зависимость выходных характеристик БТ от температуры для схем включения с ОБ (а) и ОЭ (б).

Однако обычно IКБО значительно меньше IЭ, изменение IК составляет доли процента и его можно не учитывать.

В схеме с ОЭ положение иное. Здесь парамет­ром является IБ и его надо поддерживать неизменным при измене­нии температуры. Будем считать в первом приближении, что коэф­фициент передачи не зависит от температуры. Постоянство IБ оз­начает, что температурная зависимость IК будет определяться сла­гаемым ( + 1)IКБО. Ток IКБО (как тепловой ток перехода) примерно удваивается при увеличении температуры на 10°С, и при >> 1 при­рост тока ( + 1)IКБО может оказаться сравнимым с исходным значе­нием коллекторного тока и даже превысить его.

На рисунке 3.8,б показано большое смещение выходных характе­ристик вверх. Сильное влияние температуры на выходные характе­ристики в схеме с ОЭ может привести к потере работоспособности конкретных устройств, если не принять схемотехнические меры для стабилизации тока или термостатирование.


3.3 Дифференциальные параметры биполярного транзистора


Статические характеристики и их семейства наглядно связывают постоянные то­ки электродов с постоянными напряжениями на них. Однако часто возникает задача установить количественные связи между небольшими изменениями (дифференциа­лами) этих величин от их исходных значений. Эти связи характеризуют коэффициен­тами пропорциональности -дифференциальными параметрами.

Рассмотрим процедуру введения дифференциальных параметров БТ на приме­ре наиболее распространенных h-параметров, приводимых в справочниках по тран­зисторам. Для введения этой системы параметров в качестве независимых перемен­ных при описании статического режима берут входной ток IВХ (IЭ или IБ) и выходное на­пряжение UВЫХ (UKБ или (UКЭ):

U1= f (I1,U2) (3.23)

I2= f (I1,U2)


В этом случае полные дифференциалы

(3.24)


Частные производные в выражениях (3.24) и являются дифференциальными h-napaметрами, т.е.

dU1=h11 d I1 +h12 dU2 (3.25)

dI2=h21 dI1 + h22 dU2

(h11 -входное сопротивление, h12 -коэффициент обратной передачи, h21 -коэффициент передачи входного тока и h22 -выходная проводимость). Названия и обозначе­ния этих параметров взяты из теории четырехполюсников для переменного тока.

Приращения статических величин в нашем случае имитируют переменные токи и напряжения.

Для схемы с общей базой

dUЭБ=h11Б d IЭ +h12Б dUКБ (3.26)

dIК=h21Б dIЭ + h22Б dUКБ


Эти уравнения устанавливают и способ нахождения по статическим характери­стикам, и метод измерения h-параметров. Полагая dUКБ = 0, т.е. UКБ = const, можно найти h11Б и h21Б, а считая dIЭ = 0, т. е. IЭ = const. определить h12Б и h22Б.

Аналогично для схемы с общим эмиттером можно переписать (3.26) в виде

dUБЭ=h11Э d IБ +h12Э dUКЭ (3.27)

dIК=h21Э dIБ + h22Э dUКЭ


Связь h-параметров со статическими характеристиками схем с ОБ и ОЭ и их определение по ним рассмотрены в 4.


3.4 Линейная (малосигнальная) модель биполярного транзистора


В качестве малосигнальных моделей могут быть использованы эквивалентные схемы с дифференциальными h-, у- и z-параметрами, которые имеют формальный харак­тер и в которых отсутствуют непосредственная свя­зь с физической структурой транзистора. Например, эквивалентная схема для системы Н-параметров приведена на рисунке 3.9.

Рисунок 3.9 Эквивалентна схема БТ в системе Н-параметров.


Широкое распространение нашли эквивалентные схемы с так называемыми физи­ческими параметрами, которые опираются на нелинейную дина­мическую модель Эберса - Молла, т.е. тесно связаны с физичес­кой структурой биполярного транзистора.

Малосигнальную схему БТ легко получить из нелинейной ди­намической модели заменой эмиттерного и коллекторного диодов их дифференциальными сопротивлениями, устанавливающими связь между малыми приращениями напряжения и тока. Кроме то­го, в усилительных схемах используется либо нормальный актив­ный, либо инверсный активный режим, а режим насыщения недо­пустим. Поэтому при переходе к малосигнальной схеме можно ог­раничиться рассмотрением наиболее распространенного нор­мального активного режима, так как результаты легко перенести и на инверсный активный режим. В этом случае можно исключить генератор тока и малосигнальную модель БТ для схемы включе­ния с ОБ можно изобразить, как на рисунке 3.10.

Рисунок 3.10 Эквивалентная схема БТ при включении его с ОБ.


Поясним смысл элементов модели. Резистор RЭ представляет дифференциальное сопротивление эмиттерного перехода. В пер­вом приближении его можно определить по формуле для идеализи­рованного р-n перехода:

RЭ=dU/dIT/IЭ, (3.28)

где IЭ- постоянная составляющая тока эмиттера. Так как при ком­натной температуре т = 0,026 В, то при IЭ = 1 мА RЭ = 26 Ом.

Величина RК называется дифференциальным сопротивлением коллекторного перехода. Оно обусловлено эффектом Эрли и мо­жет быть определено по наклону выходной характеристики:

. (3.29)

Величина RК обратно пропорциональна значению парамет­ра h22Б. Дифференциальное сопротивление коллектора может составлять сотни килоом и мегаомы, тем не менее его следует учитывать.

Реактивные элементы модели (Сэ, Ск) оказались теперь присое­диненными параллельно резисторам RЭ и RК. Сопротивление базы rББ, которое может превышать сотни ом, все­гда остается в модели.

rББ=h12/h22 . (3.30)


Приведенная эквивалентная малосигнальная модель БТ формально относится к схеме включения с ОБ. Однако она при­менима и для схемы с ОЭ. Для этого достаточно поменять мес­тами плечи этой схемы, называемой Т-образной схемой с фи­зическими параметрами. Электрод “Б” следует изобразить входным, а “Э” - общим, как показано на рисунке 3.11.

Рисунок 3.11 Эквивалентная схема БТ при включении его с ОЭ.


Значения всех элементов остаются прежними. Однако при таком изобра­жении появляется некоторое неудобство, связанное с тем, что зависимый генератор тока в коллекторной цепи выражается не через входной ток (ток базы). Этот недостаток легко устранить преобразованием схемы к виду, изображенному на рисунке 3.11. Чтобы обе схемы были равноценными четырехполюсниками, они должны иметь одинаковые параметры в режимах холо­стого хода и короткого замыкания. Это требует перехода от тока H21БIЭ к току Н21ЭIБ и замены RК и CК на RК* и CК* соответственно. Связи этих величин определяются формулами

RК*21БRК/ Н21Э=RК /( Н21Э+1) , ( 3.31 )

СК*= СК( Н21Э+1) . ( 3.32 )

Легко убедиться, что RК* характеризует наклон выходной характери­стики (эффект Эрли) в схеме с ОЭ и связан с выходной проводимо­стью в этой схеме соотношением (5.43). Во сколько раз уменьшает­ся RК* по сравнению с RК, во столько же раз возрастает емкость СK* по сравнению с СK, т.е. RKCK =RK*CK*. ]


3.5 Частотные свойства биполярного транзистора


Частотные свойства определяют диапазон частот синусоидаль­ного сигнала, в пределах которого прибор может выполнять харак­терную для него функцию преобразования сигнала. Принято частот­ные свойства приборов характеризовать зависимостью величин его параметров от частоты. Для биполярных транзисторов использует­ся зависимость от частоты коэффициента передачи входного тока в схе­мах ОБ и ОЭ Н21Б и Н21Э. Обычно рассматривается нормальный активный режим при малых амплитудах сигнала в схемах включения с ОБ и ОЭ.

В динамическом режиме вместо приращения токов необходимо брать комплексные амплитуды, поэтому и коэффициенты передачи заменяются комплексными (частотно зависимыми) величинами: Н21Б и Н21Э.

Величины Н21Б и Н21Э могут быть найдены двумя способами:

-решением дифференциальных уравнений физических про­цессов и определением из них токов;

-анализом Т-образной эквивалентной схемы по законам теории электрических цепей.

Во втором случае Н21Б и Н21Э будут выражены через величины элек­трических элементов схемы. Мы проведем анализ частотных свойств коэффициентов передачи, используя Т-образную линейную модель (эквивалентную схему) n-р-n транзистора (рисунки 3.10 и 3.11).

На частотные свойства БТ влияют СЭ, СК и rББ, а также время пролета носителей через базу Б.

Нет надобности рассматривать влияние на частотные свойства транзистора каждого элемента в отдельности. Совместно все эти факторы влияют на коэффициент передачи тока эмиттера Н21Б, который становится комплексным, следующим образом:

, (3.33 )

где Н21Б0- коэффициент передачи тока эмиттера на низкой частоте, f - текущая частота, fН21Б- предельная частота.

Модуль коэффициента передачи тока эмиттера равен:


( 3.34 ).

Не трудно заметить, что модуль коэффициента передачи Н21Бна предельной частоте fН21Б снижается в раз.

Сдвиг по фазе между входным и выходным токами определяется формулой

. ( 3.35 )

Для схемы с ОЭ известно соотношение

( 3.36 ).

Подставляя (3.33) в (3.36) получим

(3.37),

где .

Модуль коэффициента передачи тока базы будет равен

(3.38).

Как видно, частотные свойства БТ в схеме ОЭ значительно уступают транзистору, включенному по схеме с ОБ.

Граничная частота fГР - это такая частота, на которой модуль коэффициента передачи Н21Э=1. Из (3.38) получим, что fГРfН21ЭН21Э0.

Транзистор можно использовать в качестве генератора или усилителя только в том случае, если его коэффициент усиления по мощности КP1. Поэтому обобщающим частотным параметром является максимальная частота генерирования или максимальная частота усиления по мощности, на которой коэффициент усиления по мощности равен единице. Связь этой частоты с высокочастотными параметрами определяется выражением

, ( 3.39 ).

где fН21Б-предельная частота в мегагерцах; r1ББ-объемное сопротивление в омах; CК-емкость коллекторного перехода в пикофарадах; fМАКС-в мегагерцах.


3.6 Способы улучшения частотных свойств биполярных транзисторов


Рассмотренное выше позволяет сделать следующие выводы. Для улучшения частотных свойств (повышение предельной частоты ) рекомендуется следующее.

1. Уменьшать время пролета инжектированных носителей в ба­зовой области, т.е.

а) уменьшать ширину базовой области WБ;

б) создавать n-р-n транзисторы, так как подвижность электронов выше, чем у дырок, примерно в 2 раза;

в) использовать германиевые БТ, так как в германии подвиж­ность носителей выше. Еще большие возможности открывает ис­пользование арсенида галлия.

  1. Создавать ускоряющее поле в базовой области для инжекти­рованных из эмиттера носителей. Последнее возникает при нерав­номерном распределении примесей в базе по направлению от эмит­тера к коллектору (рисунок 3.12). Концентрацию около эмиттера дела­ют примерно в 100 раз больше, чем около коллектора.

Рисунок 3.12 К образованию электрического поля в базе дрейфого БТ.


Появление поля объясняется просто. Так как концентрация основных носителей в любой точке базы (дырок n-р-n транзистора) приблизительно равна концентрации примесей в этой точке, то распределение примесей Na(х) одновременно будет и распре­делением дырок p(х). Под влиянием градиента концентрации ды­рок будет происходить их диффузионное движение к коллектору, приводящее к нарушению условия электрической нейтрально­сти: около эмиттера будет избыток отрицательного заряда ионов акцепторов, а около коллектора - избыток положительного заря­да дырок, которые приходят к коллекторному переходу, но не проходят через него.

Нарушение электрической нейтральности приводит к появле­нию внутреннего электрического поля в базовой области (минус у эмиттера, плюс у коллектора). Появляющееся поле, в свою оче­редь, вызовет встречное дрейфовое движение дырок. Нарастание поля и дрейфового потока будет происходить до того момента, ког­да дрейфовый и диффузионный токи дырок уравняются. Легко ви­деть, что установившееся (равновесное) значение поля будет уско­ряющим для электронов, которые входят в рабочем режиме из эмиттера в базу и будут уменьшать их время пролета, т.е. повы­шать предельную частоту БТ.

Биполярные транзисторы с неравномерным распределением примесей в базе, приводящим к появлению ускоряющего поля, называются дрейфовыми, а обычные - бездрейфовыми. Практи­чески все современные высокочастотные и сверхвысокочастот­ные БТ являются дрейфовыми.

Уменьшение времени пролета в базовой области n-р-n транзистора при

экспоненциальном законе убывания концентрации акцепторов от Nа(0) до Nа(WБ) учитывается коэффициентом не­однородности базы:

=0,5lnNА(0)/NА(WБ)

Поэтому [см. (5.93)] можно написать

Для бездрейфовых транзисторов=0 , а типичные значения для дрейфовых транзисторов .

3. Уменьшать барьерные емкости эмиттерного и коллекторного переходов путем уменьшения сечения областей транзистора и уве­личения ширины переходов (выбором концентрации примесей и ра­бочего напряжения).

4. Уменьшать омическое сопротивление областей базы rББ.

5. Уменьшать время пролета носителей в области коллекторно­го перехода.

Следует отметить, что ряд требований несовместимы и не­обходимо при создании транзисторов применять компромисс­ные решения.


3.7 Работа транзистора в усилительном режиме


При работе транзистора в различных радиотехнических устройствах в его входную цепь поступают сигналы, например переменные напряжения. Под действием входного переменного напряжения изменяются входной и выходной токи транзистора.

Для выделения полезного сигнала в выходную цепь транзистора включают элементы нагрузки. В простейшем случае нагрузкой может служить резистор Rк. На резисторе нагрузки за счет прохождения выходного тока выделяется, кроме постоянного, переменное напряжение. Амплитуда этого напряжения зависит от амплитуды переменной составляющей выходного тока и сопротивления резистора Rк и может быть больше входного напряжения. Процесс усиления сигнала удобно рассмотреть на примере простейших усилителей.

Простейшая схема усилителя на транзисторе, включенном по схеме с ОЭ, показана на рисунке 3.13.

Коллекторная цепь состоит из резистора Rк и источника Ек, а цепь базы - из источников тока IБ0 и IБm Источник IБ0 обеспечивает положение исходной рабочей точке на участке характеристик с наименьшей нелинейностью. Источник IБm- источник сигнала. В качестве выходного используется переменное напряжение, выделяемое на резисторе нагрузки Rк (на коллекторе транзистора).

Рисунок 3.13 Схема усилителя на БТ.


Работа такого усилителя поясняется временными диаграммами токов и напряжений, изображенными на рис. 3..

При IБm =0 токи базы и коллектора будут определяться токами в рабочей точке (IБ 0, IК 0)и напряжением на коллекторе UК0= ЕК-IК 0 Rк

Рисунок 3.14 Временные диаграммы усилителя.


Во время положительного полупериода входного тока (рис. 3.14, а) прямое напряжение эмиттерного перехода увеличивается, что вызывает рост тока коллектора (рис. 3.14, б) и уменьшение напряжения UКЭ за счет увеличения падения напряжения на сопротивлении коллектора (рисунок 3.14, в). Если работа происходит на линейных участках характеристик транзистора, то формы переменных составляющих токов базы и коллектора совпадают с формой входного напряжения, а переменное напряжение на коллекторе, обусловленной переменной составляющей коллекторного тока, оказывается сдвинутым относительно входного напряжения на 1800. При соответствующем выборе сопротивления нагрузки Rк амплитуда переменного напряжения на выходе такого усилителя Umвых=IКmRк может значительно превышать амплитуду входного напряжения. В этом случае происходит усиление сигнала. Расчет параметров усиления дан в

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: