Xreferat.com » Рефераты по радиоэлектронике » Проект реконструкции кабельной магистрали на участке Ленинск – Амурзет

Проект реконструкции кабельной магистрали на участке Ленинск – Амурзет

зависит от ослабления сигнала, но по расчету выполняется с некоторым запасом, поэтому больше чем в технических данных на оборудование завода-изготовителя, что может быть, так как расчет поверочный. Возможно, не были учтены какие-нибудь параметры, измененные заводом-изготовителем в процессе проектирования или технологии изготовления, что возможно, является коммерческой тайной, применения кабеля с меньшим затуханием.

Длина между ОП-1 и ОП-2 равна 148, что превышает максимальную =98,4,следовательно, необходимо установить, на кабельной магистрали, НРП или ОРП. Так как в с.Биджан необходимо выделить 120 каналов ТЧ, то там же располагаем ОРП.


5.2 Расчет и построение диаграммы уровней передачи


При проектировании и эксплуатации системы связи необходимо знать величины уровней сигнала в различных точках тракта передачи. Чтобы охарактеризовать изменения уровня сигнала вдоль линии связи используют диаграмму уровней – график, который показывает распределение уровней вдоль тракта передачи.

Для построения диаграммы уровней необходимо рассчитать ослабление всех регенерационных участков по формуле:

, (5.13)

где - уровень мощности на приеме, ;

- уровень мощности источника излучения, ;

- потери в разъемном соединении, ;

- количество разъемных соединений;

- потери в неразъемных соединениях, ;

- количество неразъемных соединений;

- коэффициент затухания ОВ, .

По схеме организации связи в дипломном проекте два участка регенерации:

  • ТРП Ленинское - ТРП Биджан длиной 72;

  • ТРП Биджан – ОП Амурзет длиной 76.

Для расчета определяем количество строительных длин кабеля на каждом участке регенерации:

  • 1 участок ,

  • 2 участок .

Подставляя в формулу (5.13) рассчитанные значения, получим:

,

.

На основании полученных расчетов строим диаграмму уровней, рисунки 5.1 и 5.2.

Исходя из полученных результатов, делаем вывод, что полученные уровни на приеме не ниже минимального уровня приема.



5.3 Расчет норм на качественные характеристики групповых трактов

ЦСП


Нормы для ввода трактов в эксплуатацию используются, когда каналы и тракты, образованные аналогичным оборудованием систем передачи, уже имеются на сети и прошли испытание на соответствие долговременным нормам. Нормы технического обслуживания используются при контроле в процессе эксплуатации трактов и для определения необходимости вывода их из эксплуатации при выходе контролируемых параметров за допустимые пределы.

Оперативные нормы на показатели ошибок основаны на измерении характеристик ошибок за секундные интервалы времени по двум показателям [9]:

  • коэффициент ошибок по секундам с ошибками (ESR);

  • коэффициент ошибок по секундам, пораженными ошибками (SESR).

(ESR) – это отношение числа EST (секунда с ошибками) к общему числу

секунд в период готовности в течение фиксированного интервала

измерений;

(SESR) – это отношение числа SEST (период в одну секунду, содержащий

30 % блоков с ошибками) к общему числу секунд в период

готовности в течении фиксированного интервала измерений.

Измерения показателей ошибок для оценки соответствия оперативным нормам могут проводиться как в процессе эксплуатационного контроля, так и при закрытии связи с использованием специальных средств измерений.

Для оценки эксплуатационных характеристик должны использоваться результаты измерений лишь в периоды готовности канала или тракта, интервалы неготовности из рассмотрения исключаются.

Контроль показателей ошибок в каналах или трактах для определения соответствия оперативным нормам может производиться в эксплуатационных условиях за различные периоды времени - пятнадцать минут, один час, одни сутки, семь суток. Для анализа результатов контроля определяются пороговые значения S1 И S2 числа ES и SES за период наблюдения.

При вводе в эксплуатацию линейного тракта цифровой системы передачи измерения должны проводиться с помощью псевдослучайной цифровой последовательности с закрытием связи, при этом проверка производится в два этапа.

Если за период наблюдения Т (рисунок 5.3) по результатам эксплуатационного контроля получено число ES или SES, равное S, то:

при S S2 - тракт не принимается в эксплуатацию,

при S Ј S1 - тракт принимается в эксплуатацию,

при S1 < S < S2 - тракт принимается условно - с проведением дальнейших испытаний за более длительные сроки.

Расчет пороговых значений производится в следующем порядке (расчет будем производить для первичного цифрового сетевого тракта и для линейного

тракта):

  • определяется среднее допустимое число ES и SES за период наблюдения:

RPO=Д·Т·В, (5.14)


где Д - суммарное значение доли общей нормы, при L=124 км, значение L округляем до значений указанных в таблице 4.4 [9], исходя из таблицы при L Ј150, Д=0,039;

Т - период наблюдения в секундах;

В - общая норма на данный показатель берем из таблицы 4.1 [9];

  • определяется пороговое значение BISO за период наблюдения Т


, (5.15)


где k - коэффициент, определяемый назначением эксплуатационного

контроля, берем из таблицы 4.6 [9], при вводе в эксплуатацию

k=0,1.

  • определяются пороговые значения S1 и S2 по формулам:


, (5.16)

, (5.17)

. (5.18)

На первом этапе измерения проводятся с помощью псевдослучайной цифровой последовательности в течении пятнадцати минут. Если наблюдается хоть одно событие ES или SES или наблюдается неготовность, то измерение повторяется до двух раз. Если в течение и третьей попытки наблюдались ES или SES, то надо проводить локализацию неработоспособности.

Если первый этап прошел успешно, то проводится испытание в течение одних суток.

Производим расчет пороговых значений для первичного цифрового сетевого тракта.


,

,

,

,

,

,

,

,

,

.


Расчет пороговых значений для линейного тракта аналогичен предыдущему, результаты расчетов сведем в таблицу 5.1.


Таблица 5.1

Вид тракта ESR SESR

RPO ВISO G

S1

S2

RPO BISO G

S1

S2

ПЦСТ 67,4 6,74 5,19 1,55 11,93 3,4 0,34 1,1 0 1,44
ЛЦТ 126,4 12,64 7,11 5,53 19,75 3,4 0,34 1,1 0 1,44


6 ПОВЕРОЧНЫЙ РАСЧЕТ АППАРАТНЫХ СРЕДСТВ


В качестве поверочного расчета, произведем расчет чувствительности приемника излучения (ПИ).

Приемниками излучения называют устройства, преобразующие оптическую энергию в электрическую, которая затем подвергается обработке электронными схемами приемного оптоэлектронного модуля (ПРОМ). Идеальный приемник излучения должен:

  • точно воспроизводить форму принимаемого сигнала;

  • обеспечить максимальную мощность электрического сигнала в своей нагрузке при заданной мощности оптического сигнала;

  • не вносить дополнительного шума в принимаемый сигнал;

  • обладать большим динамическим диапазоном;

  • иметь небольшие размеры, высокую надежность, малую стоимость, низкие питающие напряжения.

В ВОСП в качестве ПИ используются фотодиоды (ФД), к которым предъявляются следующие основные требования [11]:

  • высокая чувствительность;

  • требуемые спектральная характеристика и широкополосность;

  • низкий уровень шумов;

  • требуемое быстродействие;

  • большой срок службы.

Основным параметром ПРОМ является чувствительность – минимальная средняя во времени мощность сигнала на входном полюсе, при которой обеспечивается требуемое значение коэффициента ошибок.

Чувствительность ПРОМ зависит от параметров приемника излучения (ФД, ЛФД) и шумовых показателей предусилителя. По этой причине к схемотехнике входных каскадов ПРОМ предъявляются специфические, зачастую противоречивые требования: минимальный уровень шумов в заданной полосе пропускания (для заданной скорости) при широком динамическом диапазоне [10].

В этой связи малошумящие предварительные усилители для ПРОМ выполняют по двум основным схемам:

- высокоимпедансный ( с большим входным импедансом Rвх ® Ґ,

Свх ® 0), рисунок 6.1;

  • трансимпедансный (с отрицательной обратной связью с помощью

резистора Roc), рисунок 6.2.

В высокоимпедансном усилителе для снижения уровня шума добиваются высокого входного сопротивления (метод простой противошумовой коррекции). Это неизбежно сужает динамический диапазон и полосу пропускания усилителя. Для ее восстановления используют корректор АЧХ, который в цифровых системах называют выравнивателем. Во второй схеме для расширения полосы пропускания используют параллельную отрицательную обратную связь. Полоса пропускания расширяется за счет снижения динамического входного сопротивления усилителя. Трансимпедансный усилитель уступает высокоимпедансному по шумам, но зато обладает более широким динамическим диапазоном.

В аппаратуре ОТГ-32Е, в качестве оборудования линейного тракта, применяется плата оптического стыка (ПОС) в которой используется p-i-n-ГЕТ модуль типа ПРОМ 364.

ПРОМ преобразует оптический сигнал, поступающий на его вход, в электрический сигнал в коде СMI и усиливает последний с минимальным уровнем шумов.

Приемный оптический модуль, ПРОМ 364, выполнен в единой конструкции внутри которого содержится р-i-n фотодиод (марки ФД-110) и предварительный усилитель–корректор, разработанный по схеме высокоимпедансного усилителя, на малошумящем транзисторе КТ3102А. Параметры фотодиода ФД-110 и транзистора КТ3102А приведены в таблицах 6.1 и 6.2 соответственно.

Таблица 6.1

Параметры p-i-n фотодиода ФД-110

Область спектральной чувствительности,

0,4…1,9

Токовая чувствительность,

0,4

Темновой ток не более,

65

Время отклика,

10

Емкость перехода,

4
Рабочее напряжение, В 8

Таблица 6.2

Параметры n-p-n транзистора КТ3102А

Статистический коэффициент усиления тока, b

100

Обратный ток коллектора Iко,

0,5

Минимальный коэффициент шума,

1,5

Максимальный коэффициент усиления по мощности Кр,

12,0

Емкость коллекторного перехода Сб/к,

6

Емкость эммитерного перехода Сб/э,

1,0

Динамическое входное сопротивление rбўб,

50

С достаточной для инженерных расчетов точностью чувствительность ПРОМ можно вычислить по формуле [10]:


, (6.1)


где - эквивалентная мощность шума ПРОМ, А2.

Если Y=1, то значение P0, полученное из (6.1), называют пороговой чувствительностью. При Y=6 значение P0 соответствует коэффициенту ошибок .

Чувствительность ПРОМ можно также выразить в децибелах:


. (6.2)


При расчете будем считать, что АЧХ ПРОМ будет иметь вид ФНЧ типа Баттерворта второго порядка, т. е. I1 = I3 =1,11 А; См = 1 пФ; Т=300°К.

Расчет начинаем с определения суммарной емкости на входе предусилителя:


. (6.3)


Далее определяем оптимальное по шумам значение тока коллектора, при котором минимизируется вклад шумов вследствие токов базы и коллектора в суммарный шум [10]:


(6.4)


где К – постоянная Больцмана, К =

В - скорость передачи информации, бит/с;

b - статистический коэффициент усиления тока;

q - заряд электрона, q =

Нагрузочное сопротивление определяем по формуле:


(6.5)


где IT - темновой ток, А;

rбў б - динамическое входное сопротивление транзистора, .

Выбираем ближайший номинал RН=30 .

Эквивалентную мощность шума ПРОМ определяем по формуле [10]:


(6.6)


где

(6.7)


(6.8)


(6.9)


Отсюда по формулам (6.1) и (6.2) находим чувствительность ПРОМ:


,



Исходя из пункта 6.3

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: