Xreferat.com » Рефераты по радиоэлектронике » Реверсная магнитная фокусирующая система мощного многолучевого клистрона

Реверсная магнитная фокусирующая система мощного многолучевого клистрона

4U0 = - h2 / 0 .


Для двумерного уравнения Лапласа соответственно имеем


U1 + U2 + U3 + U4 – 4U0 = 0


Аналогично может быть получен конечно-разностный аналог уравнения Пуассона в цилиндрических координатах:



2U

+ 1

U

+

2U

= - ;

r2

r

r

z2

0


U1 + U2 + U3 + U4 – 4U0 +

h

(U2U4) = -

h2

, (2.5)

2r0

0


где r0 – расстояние от оси симметрии до рассматриваемой точки.

Для точек, лежащих на оси симметрии, вместо (2.5) будем иметь:


U1 + U3 + 4U2 – 6U0 = - h2 / 0 .


Записанные выше разностные уравнения связывают значения потенциала в отдельных дискретных точках, поэтому для расчета поля область, в которой ищется решение, покрывается квадратной сеткой с шагом h. Для каждого узла, лежащего внутри рассматриваемой области, составляется разностное уравнение, связывающее потенциал данного узла и четырех прилежащих к нему других узлов сетки. При этом узлам, совпадающим с границей области, приписываются фиксированные значения потенциала, равные потенциалам соответствующих точек границы.

Конечно - разностные уравнения, написанные для узловых точек сетки, образуют систему линейных алгебраических уравнений, число которых равно числу неизвестных. Таким образом, решение краевой задачи сводится к решению системы алгебраических уравнений. При этом граничные условия участвуют в решении через значения потенциалов граничных узлов и опорных точек.

Для уменьшения погрешности, связанной с заменой дифференциального уравнения разностным, необходимо уменьшать шаг сетки, что означает увеличение числа узлов и, соответственно, увеличение порядка системы уравнений. В расчетах количество узлов может достигать нескольких тысяч, вследствие чего непосредственное решение системы уравнений методом исключения оказывается невозможным и для решения используется метод последовательных приближений, иначе называемый методом итерации. В настоящее время этот метод, имеющий ряд разновидностей, получил широкое применение при расчетах полей на ЭВМ.

При расчете траектории электронов в ЭОС, широкое применение получил метод последовательных приближений, заключающийся в следующем. В качестве полей первого приближения берутся поля без учета собственных полей потока частиц. Эти поля используются для расчета траекторий первого приближения. Поля и траектории второго приближения рассчитываются с учетом (приближенным) собственных полей пучка. Процесс последовательных приближений продолжается до тех пор, пока результаты последующего п – го приближения не будут достаточно близки к результатам предыдущего (n – l) – гo приближения. В качестве критерия сходимости процесса могут, например, служить координаты и углы наклона траекторий частиц в некоторой выбранной плоскости анализируемой системы. В тех случаях, когда процесс последовательных приближений сходится, для получения конечного результата с необходимой для практики точностью обычно требуется 5 – 10 приближений.

При решении самосогласованных задач методом последовательных приближений используется дискретная модель потока частиц в виде траекторий – трубок тока. Для этого на входе в анализируемую систему поток частиц разбивается в поперечном направлении на N элементарных слоев – трубок тока. Парциальный ток каждой трубки Ik рассчитывается исходя из площади поперечного сечения трубки и распределения плотности тока по сечению пучка (последнее предполагается известным). Этот ток приписывается одной «центральной» траектории трубки, ход которой и рассчитывается в дальнейшем. В таком случае решение самосогласованной задачи сводится к совместному решению уравнений поля, движения и непрерывности тока. Последнее применительно к данной модели пучка имеет вид Ik = const. По известному распределению заряда производится расчет поля следующего приближения и т. д.


1.4. Способы измерения реальных магнитных полей в мощных клистронах .

В последнее время стали применяться полупроводниковые измерители магнитных полей, так называемые датчики э.д.с. Холла. Датчиками э.д.с. Холла можно измерять как постоянные, так и переменные магнитные поля.

Эффект Холла состоит в том, что на боковых гранях образца. Через который пропускается постоянный ток, при наличии внешнего магнитного поля возникает поперечная разность потенциалов. Для образца, сделанного из полупроводника в форме параллелепипеда, это разность потенциалов определяется уравнением


Uy = R

ix Нz

10 – 8 в,

(2.6)

d


Где ix – сила тока в образце, Нz – напряженность магнитного поля, d – толщина образца, R – константа Холла.

Таким образом, согласно формуле (2.6) при пропускании постоянного тока через образец в нем возникает разность потенциалов, которая будет пропорциональна напряженности магнитного поля. У датчиков э.д.с. Холла пропорциональность между U и Н соблюдается с точностью до нескольких процентов для полей порядка 2 104 э.

В настоящее время для изготовления датчиков используются полупроводники, обладающие большими подвижностями носителей тока. К ним относятся элементы Те, Вi, Ge, а также некоторые бинарные соединения со структурой цинковой обманки: НgSeё НgТе, InAsё InSbё Pbse, PbTe и AgTe.

Датчики э.д.с. Холла используются в виде тонких пластинок, которые вырезаются с помощью алмазных дисковых пил из монокристалла или поликристалла. Отрезанные пластинки шлифуются и подвергаются специальной обработке. Пленочные датчики выполнятся из НgSe и НgТе в виде тонких пленок (до 10 мк). Они получаются методом напыления полупроводника на стеклянный или слюдяной базис, через определенные трафареты. Поверхность базиса предварительно тщательно очищается. После чего наносятся металлические электроды нужной формы. Электроды изготовляются путем испарения меди в вакууме или методом вжигания серебряной пасты. Только после этого на базис, нагретый до 1000, наносится слой полупроводника. Полученные пленочные датчики подвергаются отжигу при температуре 100 – 1100, чтобы обеспечить лучшую стабильность их параметров.

Чувствительность отожженных датчиков в течение одного года изменяется только на 2 – 3%. Для предохранения датчиков от различных механических повреждений пленки полупроводника покрываются тонким слоем клея БФ-2. При изготовлении датчиков э.д.с. Холла большое внимание уделяется получению хорошего электрического контакта с полупроводником.

Контакты выполняются таким образом, чтобы они не вызывали ни ослабления, ни искажения сигнала, а при работе на переменном токе они не должны обладать выпрямительными свойствами. Для этого или шлифуется поверхность полупроводника, или наносится в некоторой ее области слой очень высокой проводимости, сделанный из того же полпроводника, что и основной слой датчика, но с большей концентрацией носителя тока.


1.5. Постановка задачи.

Как следует из проделанного обзора литературы расчет фокусирующей системы мощного клистрона с реверсной магнитной фокусировкой представляет собой решение сложной задачи электронной оптики. Из обзора также следует, что в последние годы разработаны аналитические и численные методы расчета ЭОС, использование которых позволяет сравнительно быстро провести проектирование ЭОС в том числе и с реверсной фокусировкой.

Основной целью данной работы является использование современных компьютерных программ расчета для анализа и оптимизации клистрона КИУ-147, разработанного около 15 лет тому назад. Этот клистрон используется в ускорительной технике и имеет следующие параметры:

Импульсная мощность, мВт – 5;

Средняя мощность, кВт – 25;

Частота, мГц – 2450;

КПД, % - 44;

Коэффициент усиления, дБ – 50.

В клистроне применяется двух реверсная магнитная фокусирующая система на радиально намагниченных магнитах которая формирует сорока лучевой электронный поток с суммарным первеансом 20  10-6 А/В3/2.

Основной задачей дипломной работы является расчет конфигурации электронных лучей от катода до конца пролетного канала и последующая оптимизация ЭОС на основе современных компьютерных программ расчета.

Исходные данные:

1. Анодное напряжение – 52 кВ;

2. Количество электронных лучей – 40;

3. Расположение электронных лучей:

а) диаметр 84 – 21 луч,

б) диаметр 64 – 19 лучей;

4. Диаметр пролетного канала 6,5 – 8 мм;

5. Суммарный первеанс  20 10-6 А/В3/2;

6. Диаметр катода – 8,6 мм.

2. Современные программы проектирования ЭОС и их использование для расчета и оптимизации реверсной магнитной фокусирующей системы мощного клистрона.

2.1. Программа «Синтез», созданная на основе использования теории В.Т. Овчарова .

Для расчета ЭОС методом Синтеза изложенном в параграфе 1.3.1 использована теория Овчарова. В этой теории все внутренние траектории вычисляются из крайней с помощью выражения


r

= q2

Z , (2.1)

Ф0

l


где - функция, описывающая крайнюю траекторию электронного пучка в цилиндрической системе координат; r - радиальная координата цилиндрической системы координат; Z - продольная координата цилиндрической системы координат; Ф0 - единица измерения радиальных размеров пучка; l - единица измерения продольных размеров пучка; q2криволинейная ортогональная координата.

Для крайней траектории пучка q2 = 1, для осевой q2 = 0, а для остальных 0< q2 <1.

Решение внутренней задачи формирования аксиально-симметричного электронного пучка сводится к решению следующего дифференциального уравнения:


2u” + 2’u’ + 4u + 2

h2 - 4h2

=

i

. (2.2)

2

u


В этом уравнении x - функция, описывающая крайнюю траекторию электронного пучка и по виду совпадающая c функцией (Z/l) выражения (2.1); и(x) - функция, описывающая распределение потенциала на оси пучка; h(x) - функция, описывающая распределение магнитного поля на оси пучка; h = h(0) - значение функции h(x) на катоде; = 0 - значение функции x на катоде.

Поскольку на оси пучка криволинейная система координат совпадает с цилиндрической, функции и(х) и h(x) тождественны функциям, описывающим соответственно распределение потенциала и магнитного поля на оси пучка в цилиндрической системе координат.

Штрихами в уравнении (2.2) обозначено дифференцирование по переменной х. Входящая в (2.2) постоянная вычисляется по формуле


= 0,297

H0 l

,

(2.3)

V0


где Н0 - единица измерения магнитного поля, Э; l - единица измерения продольных размеров пучка, см; V0 - единица измерения потенциала, В.

Входящая в (2.2) постоянная i характеризует ток пучка. Она связана с микропервеансом пучка (по потенциалу V0) следующим соотношением:

i =

0,0605 P

,

(2.4)

2


где = (Ф0 / l); P - микропервеанс пучка, мкА/В3/2.

Внешняя задача в параксиальной теории формирования решается в криволинейной системе координат. При этом используется трансцендентное уравнение


V = u + q (u  +

2

h - h

) +

4

2


+

Іi

(1 – q22 + ln q22),

(2.5)

4 u


где V = U /U0 - потенциал иcкомой эквипотенциали.

Уравнение (2.5) решается относительно функции q2 (x) для каждого значения x.

В результате решения вычисляется функция q2*(x), определяющая форму искомой эквипотенциали в криволинейной ортогональной системе координат.

Далее делается переход от криволинейной системы координат к цилиндрической с помощью уравнения



d

= -

 

q ,

(2.6)

d q

1 +  q 


которое решается при следующих начальных условиях:


q = 0; = x.

(2.7)

Интегрирование производится до q = q2*, где q2* - решение уравнения (2.5) для данного x.

Соответствующее q2* значение переменной есть *, которая используется дня вычисления цилиндрических координат r и z:


r

= q2*  ;

(2.8)

l



Z

= .

l


В большинстве практических случаев уравнения (2.5) и (2.6), определяющие внешнюю задачу, могут быть решены лишь численно с помощью электронных вычислительных машин.

Распределение потенциала внутри пучка в первом приближении параксиальной теории формировании в криволинейной системе координат определяется уравнением


V1 = u + q (u  +

2


h - h

), (2.9)

4

2


где V1 - потенциал искомой эквипотенциали. Распределение плотности тока внутри пучка в криволинейной системе координат является однородным.

Расчет электростатических электронных пушек.

Выберем за единицу измерения радиальных размеров системы формирования Ф0 начальный радиус пучка, а за единицу продольных размеров пушки l - расстояние от катода до точки пролетного канала, в которой потенциал на оси пучка достигает своего постоянного значения U0 (рис. 2.1). Величину U0 примем за единицу измерения потенциала.

При решении внутренней задачи для электростатической ЭОС имеются лишь две возможности: либо задаются траектории электронов в системе, а осевое распределение потенциала вычисляется из уравнения (2.2), либо, наоборот, задается распределение потенциала на оси системы, а из уравнения (2.2) вычисляются траектории электронов.

Как распределение потенциала Функция и(х), так и траектория электронов функция f(x) в электронной пушке должны подчинятьcя определенным условиям. Условия для функции и(х):


х = 0, и(х) = 0, и’(х) = 0;

(2.10)

x 1, u = 1, u’ = u” = 0.

(2.11)

Условия (2.10) обеспечивают работу катода в режиме пространственного заряда, а условия (2.11) - отсутствие электрического поля на оси в заданном пространстве пушки.

Условие для функции (x) при х=0:


”(х) = 0.

(2.12)

Условие (2.12), как показано в теории формирования, обеспечивает сферичность эмитирующей поверхности катода.

Рассмотрим расчет пушки по принципу, когда задается функция и(х), а вычисляется функция (x). В этом случае функцию и(х) можно задать так, чтобы условия (2.10), (2.11) выполнялись, но дополнительно нужно еще отыскать такой способ задания функции и(х) в области малых значений х, при котором функция (x), вычисленная из уравнения (2.2), отвечала бы условию (2.12).

Если такой способ задания функции и(х) найден, то, проведя расчет нескольких вариантов решения внутренней задачи, можно выработать рекомендации по расчету электронных пушек, формирующих пучки с заданными параметрами.

Для решения уравнения (2.2) необходимо задать начальные условия. Решение внутренней задачи для электронной пушки удобнее проводить от катода, задавая значение функций и(х) и и'(х) при х = 0. Однако в этом случае на катоде и(х) = 0 и правая часть уравнения (2.2) обращается в бесконечность. Эту трудность можно обойти следующим образом. При заданной функции и(х) найдем приближенное аналитическое решение уравнения (2.2), справедливое в области малых х. При решении уравнения (2.2) с помощью полученного таким образом аналитического выражения сделаем первый шаг с катода в точку, в которой функция и(х) уже не равна нулю. Далее можно проводить решение уравнения (2.2) с помощью ЭВМ. Будем при расчете электростатической электронной пушки задавать функцию и(х) следующим выражением:


u = kx4/3,

(2.13)

5


где

 = 1 + an xn ,

(2.14)

n = 1



k, an (n = 1,2,…..5) – некоторые постоянные коэффициенты.

К расчету электронной пушки.



Риc. 2.1.


Очевидно, что функция и(х), заданная выражением (2.13), всегда положительна (при положительных х) и удовлетворяет условию (2.10). В области малых х функция и(х) совпадает о функцией kx4/3, описывающей распределение потенциала в плоском диоде.

Коэффициенты а1, а2, полинома (2.13) выберем таким образом, чтобы удовлетворялось условие (2.12), а с помощью коэффициентов а3, а4, a5 удовлетворим условию (2.11).

С целью отыскания соответствующих коэффициентов а1, а2, найдем для функции и(х), заданной выражением (2.13), приближенное решение уравнения (2.2), справедливое в области малых х.

При этом решение для функции (х) будем искать в виде



5



(х) = 1 + вn xn ,

(2.15)

n = 1



Из этого выражения следует, что значение "(x) при х = 0 определяется значением в2. Поэтому для выполнения условия (2.12) необходимо найти такие значения коэффициентов an, при которых в2 обращается в нуль. С этой целью подставим выражения (2.13), (2.15) в уравнение (2.2) и, приравнивая нулю коэффициенты при одинаковых степенях х, выразим вn через an. Расчет показывает, что вn выражается через коэффициенты а1, а2 и для выполнения условия в2= 0 эти коэффициенты должны вычисляться по следующим формулам:


а1 = -

8

в1 ;

(2.16)
15

а2 =

361

в12 .

(2.17)
900

Как следует и (2.15), коэффициент в1 определяет значение первой производной от функции (x) в точке x = 0, т.е. на катоде. Поэтому введем обозначение в1 = , с учетом которого формулы (2.16) и (2.17) запишутся:


а1 = -

8

 ;

(2.18)
15

а2 =

361

()2 .

(2.19)
900

Этот расчет также показывает, что в области малых х коэффициенты к, в3, в4 связаны с постоянными коэффициентами i, а3, а4 следующими соотношениями:


 = (

9

i)2/3 ;

(2.20)
4

в3 = -

33 ( 74377

()3 + а3) ;

(2.21)
37 222750

в4 = 0,228771 ()4 + 1,154518  в3 – 0,783582 а4

(2.22)

С помощью этих соотношений можно вычислить приближенное решение уравнения (2.2), справедливое в области малых х, если значения коэффициентов а3, а4 известны.

Теперь вычислим такие значения коэффициентов а3, а4, а5, при которых удовлетворяются условия (2.11). Для этого возьмем первую и вторую производные от функции и(х) и в точке х = 1 положим u(1) = 1, u'(1) = 0, u"(1) = 0. Подучим систему трех уравнений, решая которую относительно а3, а4, а5, найдем:


а3 =

119 ( 9

i)-1/3 – 10 +

48



361

()2 ;

(2.23)
9 4 15 300

а4 = –

187 ( 9

i)-1/3 – 10 +

64

 +

361

()2 ;

(2.24)
9 4 15 900

а5 =

77 ( 9

i)-1/3 +

24



361

()2 – 6 .

(2.25)
9 4 15 900

Уравнения (2.13), (2.18), (2.19), (2.23) – (2.25) определяют способ задания функции и(х), при котором выполняются как условия (2.10), (2.11), налагаемые на функцию и(х), так и условие (2.12), налагаемое на функцию (х).

После того как определена функция и(х), можно приступать к решению внутренней задачи для электростатической электронной пуша, т.е. к решению уравнения (2.2).

Будем решать уравнение (2.2) с помощью ЭВМ при следующих начальных условиях: х = х0; = 0; ’ = 0

Значение параметра х0 выберем малым (0,0001 + 0,01), а значения 0 и 0 для точки х = х0 вычислим в соответствии с (2.15) по следующим формулам:


0 = 1 +  х0 + в3 х03 + в4 х04 ;

(2.26)

’0 =  х0 + 3 в3 х02 + 4 в4 х03 .

(2.27)

Значения коэффициентов в3, в4 в области малых х, должны вычисляться по формулам (2.21), (2.22), а входящие в них значения а3, а4, а5, определяются соотношениями (2.22) - (2.25).

Решение уравнения (2.2) c помощью ЭВМ будем проводить до точки xкр, в которой производная ’(х) обращается в нуль, т.е. до кроссовера пучка.

При решении внутренней задачи для электронной пушки необходимо задавать значения параметров i, . Параметр i, как следует из (2.4), характеризует первеанс рассматриваемой пушки. Параметр  определяет радиус кривизны катода пушки (Rкp), который вычисляется по формуле:



Rкp

= - 1 . (2.28)

l




Внешняя задача также решается с помощью ЭВМ. При этом с помощью уравнения (2.5) находится решение внешней задачи в криволинейной системе координат, а затем, решая уравнение (2.6), осуществляем переход к цилиндрической системе координат. При решении внешней задачи необходимо задавать параметр V = U / U0, где U - потенциал того электрода, форма которого вычисляется. При расчете геометрии прикатодного фокусирующего электрода значение параметра V полагается равным нулю, а при расчете формы анода пушки значение параметра V следует вычислять по формуле


V = 1 +

2i

(1 – ln в2) ,

(2.29)
4

где в = rn / r - коэффициент заполнения канала пучком; rn, r - соответственно радиусы пучка и пролетного канала.

Выражение (2.29) характеризует провисание потенциала в трубе дрейфа прибора, заполненной пучком с микропервеансом Р и коэффициентом заполнения в. Оно следует из уравнений (2.2), (2.5) с учетом (2.11).

После решения внутренней и внешней задач по описанной выше методике необходимо с помощью (2.28) вычислить радиус кривизны катода Rкp. Радиус катода, характеризующий площадь его эмитирующей поверхности, определяется точкой пересечения дуги радиуса Rк с графиком функции (х).

Обобщим результаты решения внутренней задачи для электростатической пушки и составим методику расчета пушки с заданными значениями параметров.

Вследствие выполнения условия (2.12) функция (х) в области малых значений х представляет собой прямую линию, образующую с осью х угол . Поэтому радиус катода r можно вычислить в результате решения задачи о пересечении этой прямой с дугой окружности, радиус которой определяется выражением (2.28). Решив эту задачу, получим:



r

= 1 . (2.30)

l

 ()2 + (1 / )2


Обозначим радиус пучка в кроcсовере rкр. Очевидно, что rкр определяется значением функции (х) в кроссовере p и может быть вычислен с помощью выражения:



rкр

= p .

(2.31)

l


Введем понятие линейной сходимости пучка, определив ее как отношение радиуса катода rк к радиусу пучка в кроссовере rкр. Из уравнений (2.31), (2.30) для линейной сходимости электронного пучка получим следующее выражение:


S =

1 . (2.32)

p 1 + ( )2


Зависимость p от , получена в результате решения внутренней задачи для различных значений параметра , лежащих в интервале 1,2  2,4. При этом значение параметра i оставалось неизменным и равным 0,4. Вычисленная зависимость была аппроксимирована выражением


p = 1,05 + 0,709  + 0,125 ()2 .

(2.33)

Подставляя (2.33) в (2.32), получим:


S =

в

.

(2.34)

1,05 + 0,709  + 0,125 ()2 1 + ()2


Уравнение (2.34) может быть использовано для вычисления значений параметра , при котором пушка формирует пучок с заданным значением сходимости S.

При создании методики расчета электростатической пушки будем считать заданными первеанс электронного пучка Р, линейную сходимость электронного пучка S и коэффициент заполнения канала пучком в.

Для решения внутренней задачи необходимо задать значения параметров i, , а для решения внешней задачи - дополнительно значения коэффициента и потенциалов V1, V2. Потенциал V1 определяет форму прикатодного фокусирующего электрода пушки, а потенциал V2 форму анода пушки. Поэтому значение V1 положим равным нулю, а значение V2 вычислим по заданным значениям Р и в с помощью формулы (2.29). Значение параметра i выберем равным 0,4. Значение параметра  найдем по заданному значению S и вычисленному значению с помощью уравнения (2.34). Это уравнение трансцендентное и решение его возможно лишь с помощью ЭВМ.

После того как значения параметров i, V1, , определены с помощью ЭВМ, можно провести полный расчет пушки, формирующей пучок с заданными параметрами.

Такой алгоритм расчета реализован в программе «Синтез». Эта программа вычисляет геометрию электронной пушки для клистронов и ламп бегущей волны. Для вычисления необходимо задать три параметра:

Р – микропервеанс электронного потока;

S – линейную сходимость электронного потока;

b – коэффициент заполнения пролетного канала электронным потоком.

В результате расчета определяется теоретическая и технологическая геометрия электронной пушки для клистронов и ламп бегущей волны.

2.2. Программа «Алмаз» по расчету ЭОС методом анализа.

Для расчета ЭОС методом Анализа изложенном в параграфе 1.3.2 использована программа «Алмаз». Эта программа состоит из двух загрузочных модулей: aupr.exe – расчетный модуль, grafl.exe – графический модуль.

Для выполнения расчетов по программе aupr.exe необходимо предварительно подготовить файл исходных данный «fd». Затем выполнить расчеты с помощью программы aupr.exe. При этом по запросу ЭВМ указать файл вывода результатов расчета «frl». В процессе расчета программа сама создает следующие файлы для построения результатов расчета в графической форме:

geom - для построения геометрии,

traek - для построения траекторий электронов,

tok - для построения распределения плотности тока.

Для получения результатов расчета в графической форме необходимо запустить программу grafl.exe, работающей в режиме диалога, и в соответствии с запросами осуществить вывод результатов расчета в виде графиков.

При этом в программе grafl.exe работают пункты меню

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: