Xreferat.com » Рефераты по радиоэлектронике » Оптико-электронные системы

Оптико-электронные системы

tпр tобр.

T


Рис. 52. Построчная или прогрессивная траектория сканирования


Рис.53. Некоторые специальные траетории сканирования: а- гусеница: б – следящая развертка

Наибольшее распространение в автоматических ОЭП получили диссектор и видикон, соответственно системы мгновенного действия с накоплением.

В системах мгновенного действия энергия излучения каждой точки обозреваемого поля преобразуется в сигнал только в течение времени прохождения через неё сканирующего луча. Это время существенно меньше времени обзора всего поля, т.е. здесь не используется возможность накопления энергии.

В системах c накоплением осуществляется суммирование энергии излучаемой данной точкой поля в течении всего времени обзора, что позволяет повысить их чувствительность по сравнению с системами мгновенного действия.

Пояснить работы системы с накоплением удобно на примере устройства иконоскопа.

Фотокатод телевизионной трубки (мишень) можно представить в виде большого количества отдельных, изолированных друг от друга фотоэлементов, соединенных последовательно с источником э.д.с. [(см. рис. 54), R– сопротивление нагрузки, С – распределенная емкость фотокатода].

Под действием излучения одной из точек i поля обзора происходит заряд конденсатора Сi фототоком I3 в течение времени работы ключа К- времени экспозиции.

Системы с накоплением относительно сложны в эксплуатации, требуют стабилизации источников питания и боятся сильных засветок. В связи с этим, несмотря на меньшую чувствительность, в ОЭП широко используются диссекторы.

Диссектор

Его принцип действия заключаетсяв следующем. Полупрозрачный фотокатод (рис.55), на котором проектируется изображение светящегося объекта, испускает внутрь трубки фотоэлектроны в количестве, пропорциональном его освещенности. Образовавшееся электронное изображение переносится с фотокатода к электронному умножителю с помощью электрического и магнитного поля.

Для получения сигналов от всех элементов изображения производится развертка с помощью магнитной системы (5)/ 4- ускоряющее поле/.

Диссекторы выпускаются с различными типами фотокатодов, обеспечивающих чувствительность от УФ до ближней ИК области длин волн.

Видикон (рис.56)

На полупрозрачную сигнальную пластину (металлическую) 1 нанесен слой полупроводника 2. Фотоизображение считывается электронным лучом. Нормальное падение последнего обеспечивается сеткой вблизи сигнальной пластины. Электронный луч, перемещаясь по мишени, оставляет на ней электроны, приводя потенциал участка полупроводника к потенциалу катода. Чем меньше освещенность участка мишени, тем больше сопротивление полупроводника, тем меньше, следовательно, необходимо электронов для компенсации изменения заряда, т.е. считывания рельефа изображения.


Рис.54. Схемы передающей телевизионной трубки с накоплением:

а - принципиальная: б – эквивалентная


Рис.55. Диссектор


Рис.56. Видикон

Сканирование световым лучом

По принципу действия к системам с электронным сканированием близки устройства со сканированием световым лучом. Пример такого устройства –термоэлектронный преобразователь изображения – термикон (рис.57)

Приемная поверхность термикона состоит, в том числе, из очень тонкой ИК чувствительной пленки. С обратной стороны последней наносится специальный фотоэлектрический слой, эффективность которого зависит от температуры. На фотослой проецируется изображение яркого светящегося пятна, движущегося по экрану электронно-лучевой трубки по заданному закону. В зависимости от положения светящегося пятна на фотослое и распределения температуры на поверхности П количество эмитируемых электронов и фототок в цепи кольцевого коллектора изменяется на 2-3% на каждый градус изменения температуры. Изменение фототока усиливается и управляетэлектроннолучевая трубка И2.

Область применения (расширяющаяся) – в МДП структурах. Максимальное разрешение близко 50 линий на кадр при  1.


  1. Оптико-механическое сканирование.


В оптико – механических сканирующих устройствах процесс сканирования осуществляется за счет изменения направления оптической оси ОЭс. При этом общее поле обзора последовательно анализируется мгновенным полем зрения оптической системы. Общая классификация таких устройств приведена на рис.58.

Сканирование может производится за счет движения всей оптической системы прибора или её элементов – зеркал, призм, клиньев, линз, диафрагм. Оптико-механические системы, в которых сканирование осуществляется диафрагмой (щелью) , движущейся в фокальной плоскости иногда называют экранирующими. Широко известный пример – диск Нипкова. Своеобразные методы сканирования используются в системах с волоконной оптикой. Сканирование может осуществляться также путем изменения коэффициента преломления или других оптических свойств материалов, входящих в систему. Сканирование движения всей системы осуществляется в тех случаях, когда возможно использовать перемещение платформы, на которой размещается ОЭС. Для обзора более широкой полосы на местности в таких системах часто используется сканирование по строке. (рис.59).

  • Сканирование зеркалами: различают сканирование в пространстве предметов (зеркало размещается перед объективом, рис.60) и сканирование в пространстве изображений (используется широкоугольный объектив, обеспечивающий высокое качество изображения по всему полю обзора, зеркало за ним, рис. 61).

Наряду с простым зеркалом в сканирующей системе может использоваться система зеркал, зеркальные призмы, пирамиды и т.д. (рис.62-64). В качестве исполнительных механизмов применяются шаговые двигатели, кулачковые механизмы и т.д.


Рис.57. Принципиальная схема термикона.



СКАНИРОВАНИЕ В ПРОСТРАНСТВЕ ПРДМЕТОВ

ОПТИКО-МЕХАНИЧЕСКИЕ СКАНИРУЮЩИЕ УСТРОЙСТВА

СКАНИРОВАНИЕ В ПРОСТРАНСТВЕ ИЗОБРАЖЕНИЙ







СКАНИРОВАНИЕ ЗА СЧЕТ ДВИЖЕНИЯ ВСЕЙ ОПТИЧЕСКОЙ СИСТЕМЫ

СКАНИРОВАНИЕ ПОДВИЖНЫМИ ЭЛЕМЕНТАМИ ОПТИЧЕСКОЙ СИСТЕМЫ






СКАНИРОВАНИЕ ЩЕЛЬЮ, ДВИЖУЩЕЙСЯ В ПЛОСКОСТИ ИЗОБРАЖЕНИЯ


СКАНИРОВАНИЕ ЗА СЧЕТ ИЗМЕНЕНИЯ ОПТИЧЕСКИХ СВОЙСТВ ЭЛЕМЕНТОВ, ВХОДЯЩИХ В СИСТЕМУ




СКАНИРОВАНИЕ В СИСТЕМАХ С ВОЛОКОННОЙ ОПТИКОЙ



Рис. 58. Классификация оптико-механических

сканирующих устройств


Рис. 59. Однострочное сканирование с движущейся платформы.


Рис. 60.Сканирование в пространстве предметов:

  1. сканирующее зеркало; 2 – объектив;3 – диафрагма;

4 – конденсор; 5 – приемник излучения;6 – мгновенное

поле зрения; 7 – поле обзора


Рис. 61. Сканирование в пространстве изображений:

  1. сканирующее зеркало; 2 – объектив;3 – диафрагма;

4 – конденсор; 5 – приемник излучения;6 – мгновенное

поле зрения; 7 – поле обзора


Эффективность ОЭП, предназначенных для обзора пространства с неподвижного носителя может быть существенно повышена за счет применения черезстрочной развертки сканирующего луча (рис.65) линейки многоэлементного приемника. Достигаемый результат – уменьшение числа элементов приемника и уменьшение полосы частот коммутационно-усилительного тракта, причем это уменьшение равно m раз, где m = N (числу граней призмы). Недостаток – возможность пропуска цели, именно поэтому ОЭС (платформа) должна быть неподвижна.

  • Сканирование отверсием в непрозрачном экране - наиболее простой способ сканирования. Классический пример диск Нипкова. Пример этих устройств показан на рис. 66,67. Отверстие в диске Д (рис.66) расположено таким образом, что изображение, ограниченное диафрагмой ДП последовательно анализируется по строкам так, что когда одно отверстие выходит за пределы окна диафрагмы ДП, другое выходит прочерчивая следующую строку. Одна из последних конструкций с указанным механизмом сканирования – тепловизор “Янтарь” (70-е годы , поле обзора 5х4, мгновенное поле зрения 5, частота кадров 25 Гц), которым удалось убеспечить минимально обнаруживаемую разность температур =0,2 – 0,3С.

Зенитный теплопеленгатор - одна из таких разработок (её исллюстрирует рис. 67) проста по конструкции и эффективна. Зеркало (D~1500 мм, f~640 мм) создает изображение точечной цели в плоскости непрозрачной диафрагмы с вырезом , вращаемой двигателем М21 – модулятор). Сигнал запитывает неоновую лампочку Л, которая вращается с частотой диафрагмы М2 в пределах окружности, удобной для восприятия оператором. Легко видеть, что при условии точной ориентации приемного зеркала на цель, лампочка очерчивает полный круг и вспыхивает в определенном секторена краткие моменты времени при прочих условиях

  • Сканирование путем управления оптическими свойствами элементов, входящих в систему. Управление осуществляется магнитным или электрическим полем. Известно, например, что такие материалы, как нитробензол, кварц, некоторые кристаллы изменяют показатель преломления n при воздействии электрического поля. Для сканирования можно использовать систему фильтров как на рис.68, выполненных из чередующихся слоев некоторых материалов, например, сульфида цинка и креолита. Такие фильтры пропускают только монохроматическое излучение, длина волны которых в четыре раза больше толщины l фильтра. Если изготовить фильтр в виде клина и направить на него монохроматическое излучение, то последнее пройдет только в той части, где толщина соответствует четверти длины волны (при условии n=/4). Введя второй фильтр, развернутый на 90, обеспечим возможность прохождения только той части излучения, которая соответствует участкам фильтров с толщиной 1/4. Подводя к фильтрам напряжение, можно перемещать линии равной толщины и т.о. обеспечить сканирование изображения.

(На рис.68 – ГКР – генератор кадровой и строчной разверток; КФГ, КФВ – клиновые фильтры горизонтальной и вертикальной развертки).


Рис.62. Типы сканирующих зеркал: а - вращающееся двустороннее(двугранное) зеркало; б – зеркало, вращающееся вокруг оси, неперпендикулярной к нему; в – «крест» из зерал 1 и 2; г – зеркало, качающееся в двух плоскостях; д – система из двух вращающихся зеркал; е – два зеркала, вращающихся или качающихся вокруг взаимно перпендикулярных осей; ж – вращающаяся зеркальная N – гранная призма; з – вращающаяся зеркальная N – гранная пирамида.


Рис.63. Сканирующее зеркало в виде многогранной призмы:

Об – объектив; Пр –приемник из М элементов;

З – зеркало с N гранями; НП – направление полета


Рис. 64. Основные принципы сканирования плоскопараллельной пластинкой (призмой): а – ход лучей; б – призма , эквивалентная пластинке толщиной; в – поле обзора и поворот пластинки при неподвижном приемнике (диафрагме поля).


Рис. 65. Схема сканирования и расположения чувствительных слоев

многоэлементного приемника при чересстрочной развертке.


Рис.66. Система механичесого телевидения с диском Нипкова:

а – приемник излучения большой площади;

б – небольшой приемник и конденсор;

в – сканирующий диск


Рис. 67. Сканирование щелью в зенитном теплопеленгаторе


Рис. 68. Сканирующее устройство с клинообразными фильтрами.


148


  1. Анализаторы изображения - растровая модуляция


Анализатор изображения – это устройство, служащее для извлечения из оптического сигнала в виде изображения наблюдаемого объекта информации о параметрах или свойствах этого объекта.

Обычно анализ изображения осуществляется путем непрерывной или дискретной выборки значений сигнала в отдельных точках плоскости изображений. Сканирование осуществляется с помощью специальных устройств – растровых анализаторов.


  1. Классификация и принцип действия растровых анализаторов (Р.А.).


РА можно классифицировать по относительному расположению оси вращения растра и оптической оси объектива, по характеру зависимости, амплитуды, частоты, фазы или других параметров модуляции или угла визирования источника излучения, по виду модуляции или параметрам модулированного сигнала.

Классификация по относительному расположению оси вращения растра и оптической оси объектива ОЭП представлена на рис.69. Поэтому признаку различают растры с концентрической (а), эксцентрической (б) и со скрещенными осями.

Ось вращения концентрического растра совпадает с оптической осью ОЭП. Такой растр имеет нерабочую зону в центре, т.к. размеры деталей его рисунка и их линейная скорость около центра приближаются к нулю. Такой растр устанавливается во внутренней обойме подшипника, возможно его неподвижное закрепление – если изображение поля вращается – в этом случае уменьшается нерабочая часть растра в центре. В простейшем случае растр располагается вблизи приемника, как можно ближе к плоскости изображения (ПИ), но и приемник должен быть максимально приближенк ПИ, эти два конструктивных решения могут быть несовместимы. Более того из-за неоднородности чувствительности по площадке приемника в подобной конструкции появляются дополнительные и резкие изменения сигнала.

Ось вращения эксцентрического растра параллельна оптической оси ОЭП. В этом случае “мертвая” зона у растра отсутствует.

Растровый анализатор со скрещивающимися осями имеет ось вращения расположенную под некоторым углом (обычно – прямым) к оси ОЭП.

Различают два вида РА:

-с ограниченной (а) и неограниченной (б) зонами линейности



/Q – параметр модуляции, - угол визирования, - угол поля зрения л – угловой размер зоны линейности/.

Классификация РА по виду модулированного сигнала представлена на рис. 70. Здесь различают три типа: с непрерывной, импульсной и смешанной модуляцией.

Растры с непрерывной модуляцией характеризуются тем, что излучение цели проходит через них в течение времени, составляющего ~50%. В этом случае приемник освещается непрерывным периодическим сигналом, амплитуда, частота и фаза первой гармоники которого зависит от угловых координат цели. Различают амплитудную частотную, фазовую, АЧ, АФ и ЧФ непрерывную модуляцию.

Растры с импульсной модуляцией – излучение от цели проходит через них на приемник в течение времени, короткого по сравнению с периодом модуляции. Причем относительное положение импульса от цели во времени зависит от её угловых координат. Импульсная модуляция может быть амплитудной (АИМ), частотной (ЧИМ), фазовой (ФИМ), широтной и модуляцией по длительности, кодовой и смешанной импульсной.

Растры со смешанной модуляцией характеризуются тем, что наряду с непрерывной модуляцией потока имеет место периодическое импульсное изменение параметров модулированного сигнала. Причем перемещение цели приводит к нарушению закона этого периодического изменения параметров.


  1. Амплитудная модуляция


Кодирование информации о положении цели в поле зрения можно обеспечить поместив в фокальную плоскость РА в виде секторного диска (рис.71). Затемненная часть РА обычно равна кружку рассеяния объектива, как и ширина темных и светлых секторов по краям – здесь достигается 100% модуляция сигнала. Амплитуда сигнала, вырабатываемая ФП, в данной конструкции зависит не только от положения изображения цели на растре но и от величины потока излучения от цели. Избавится от этого можно введя АРУ и дополнительную полную модуляцию потока излучения. Структурная схема соответствующего ОЭП приведена на рис.72. Естественно, что секторный диск в одних случаях обеспечивает неограниченную зону линейности, в других ограниченную (рис.73, 74). Следует отметить, что фактически понятие: “линейности” условно.


Рис.69. Классификация растровых анализаторов по относительному расположению оси вращения растра и оптической оси объектива: а – концентрический, б – эксцентрический; в – со скрещивающимися осями;Об – объектив; Р – растр; Пр–приемник; Д–двигатель.


Рис.70. Классификация растровых анализаторов по виду

модуляции и параметрам модулированного сигнала.


Рис.71. Концентрический растровый анализатор – секторный растр,

обеспечивающий амплитудную модуляцию:

а – идеальный секторный; б – секторный с затемненной центральной

частью; в – секторный с полупрозрачной центральной частью.


Рис. 72. Структурная схема прибора с секторным растром и системой АРУ


Рис.73. Изображение точечных целей на секторном растре


Рис. 74. Угловая характеристика 6 и секторного растра (см.рис.73

(ориентировочная форма кривой с акцентом на точки М=0)


  1. Частотная модуляция


Зависимость частоты модулированного потока излучения от угловых координат цели, т.е кодирование информации, можно обеспечить, поместив в плоскость изображения эксцентрический РА в виде диска (рис.75), каждый из секторов которого имеет одинаковое число непрозрачных и прозрачных полос, причем центральная полоса каждого сектора направлена по радиусу, остальные ей параллельны. При вращении растра поток излучения модулируется с частотой тем большей, чем дальше от центра находится изображение цели, т.к число модулирующих полос возрастает от центра к периферии диска. Измерение координат цели можно осуществить, если применять две оптические системы размещенные относительно растра т.о., чтобы изображение одной и той же цели были смещены относительно друг друга на 90.Так как фактически в такой системе изменение частоты происходит дискретно, то точность измерения координат пропорциональна , где F – фокусное расстояние, y – величина, определяющая ступенчатый характер изменения частоты при перемещении изображения по радиусу растра. Для преобразования частоты модуляции в амплитуду электрического сигнала с целью декодирования применяются частотные детекторы (рис.76) – в простейшем случае это резонансный контур.Величина напряжения Uвых снимаемого с контура зависит от частоты. Могут быть использованы два контура, резонансные частоты которых 1, 2 разнесены относительно средней частоты. В этом случае в одном контуре при увеличении амплитуда напряжения возрастает, в другом уменьшается, а разность амплитуд определяется знаком и величиной отклонения частоты. Вместо контуров можно использовать схему, состоящую из двух ветвей – с индуктивным и емкостным сопротивлением.


  1. Фазовая модуляция


Зависимость фазы модуляции потока излучения от угловых координат точечного источника можно обеспечить, например, с помощью РА со скрещенными осями, выполненного в виде надетой на вращающийся барабан тонкой пленки, прозрачность  котрой изменяется по синусоидальному закону:

,

где - пропускание, L - длина окружности барабана пленки, N – число полных изменений прозрачности (рис.77).

Следовательно, если на поверхности плёнки сформировано изображение цели, то поток излучения, проходящий через неё и падающий на приемник, а также вырабатываемый сигнал изменяются по синусоидальному закону, причем фаза сигнала зависит от положения изображения цели на пленке растра.


Рис. 75. Эксцентрический растровый анализатор с частотной модуляцией (восьмисекторный):

1-пределы поля зрения; 2-изображение источника излучения (в центре поля зрения); 3- второе изображение источника излучения при наличии двух оптических систем ( в центре поля зрения)


Рис. 76. Принципиальные схемы и характеристики простейших частотных детекторов: а-одиночный резонансный контур; б – два контура; в – схема с индуктивностью и емкостью.


Рис.77. Растровый анализатор со скрещивающимися осями,

обеспечивающий фазовую модуляцию:

а – развертка ленты анализатора и зависимость её коэффициента пропускания от положения изображения источника излучения l: б – схема использования анализатора с фазовой модуляцией.


Для того, чтобы зафиксировать начало отсчета фазы, используются различные синхроконтакты и генераторы опорных напряжений (ГОН), которые вырабатывают электрические сигналы, момент появления или фаза которых жестко связана с положением пленки растра и не зависит от положения изображения источника излучения (обведен на рис.77 пунктиром).

Для измерения разности фаз сигнала Uс и опорного напряжения, т.е. декодирования информации о положении цели в поле зрения, используются фазовые детекторы, которые для фиксированного значения фазы называются синхронными детекторами.Принцип действия фазового детектора состоит в том, что сигнал переменного тока, подлежащий выпрямлению поступает на нагрузку через сопротивление, величина которого с помощью опорного напряжения изменяется во времени синхронно с чатотой изменения сигнала. В простейшем случае (рис.78). В качестве переменного сигнала можно применить контакт, включенный последовательно с нагрузкой и управляемый от ГОН.


  1. Амплитудно-частотная модуляция


Амплитудно-частотный РА модулирует излучение так, что изменение частоты модулированного сигнала определяет знак угла рассогласования, а изменение амплитуды модулированного сигнала определяет величину угла рассогласования. Принцип работы подобных устройств поясняют рис. 79-82.


  1. Импульсно-частотная модуляция


Импульсно-частотный РА модулирует излучение цели так, что изменение частоты модулированного сигнала определяет знак угла рассогласования, а изменение длительности модуляции потока излучения с той или иной частотой определяет величину угла рассогласования.

РА в данном случае линия раздела серий полос различной частоты представляет собой спираль Архимеда (рис.83).

В заключении раздела на рис.84-89 представлены ряд других РА, обеспечивающих кроме перечисленных функций амплитудно-фазовую, частотно-время-импульсную и широтно-импульсную модуляции.


Рис. 78. Принципиальная схема и временные графики

работы фазового детектора:


Рис.79. Амплитудно-частотный растровый анализатор

с ограниченной зоной линейности эксцентрического типа:

а – рисунок растра; б – принципиальная схема использования

растра; в-угловая характеристика


Рис.66. Расположение полей зрения на амплитудно-частотной растре с двумя оптическими системами

Рис. 67. Расположение амплитудно-частотных растров в системе с одним объективом



Рис. 82. Амплитудно-частотный растр со скрещивающимися осями


Рис.83. Импульсно-частотный растровый анализатор с неограниченной зоной линейности:

а – односекторный; б – двухсекторный;

А – нейтральная окружность – траектория относительного перемещения

изображения цели, находящейся в центре поля


Рис. 84. Многоступенчатый растр

для амплитудно-частотной модуляции


Рис. 85. Импульсно-частотный растровый анализатор в виде

вращающегося барабана: а –односекторный; б- двухсекторный


Рис.86. Амплитудно-фазовый растровый анализатор с неограниченной зоной линейности: а – рисунок растра; б –изменение потока излучения, прошедшего через растр во времени; в – изменение коэффициента пропускания растра вдоль оси у


Рис.87. Амплитудно-фазовый растр со смещенным центром

а

Рис.86. Амплитудно-фазовый растровый анализатор с

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: