Расчет корректирующих цепей широкополосных усилительных каскадов на полевых транзисторах
Цель работы – получение законченных аналитических выражений для расчета коэффициента усиления, полосы пропускания и значений элементов корректирующих цепей наиболее известных и эффективных схемных решений построения усилительных каскадов на полевых транзисторах (ПТ). Основные результаты работы – вывод и представление в удобном для проектирования виде расчетных соотношений для усилительных каскадов с простой индуктивной и истоковой коррекциями, с четырехполюсными диссипативными межкаскадными корректирующими цепями второго и четвертого порядков, для входной и выходной корректирующих цепей. Для усилительного каскада с межкаскадной корректирующей цепью четвертого порядка приведена методика расчета, позволяющая реализовать заданный наклон его амплитудно-частотной характеристики с заданной точностью. Для всех схемных решений построения усилительных каскадов на ПТ приведены примеры расчета.
1 ВВЕДЕНИЕ
Расчет элементов высокочастотной коррекции является неотъемлемой частью процесса проектирования усилительных устройств. В известной литературе материал, посвященный этой проблеме, не всегда представлен в удобном для проектирования виде. В этой связи в статье собраны наиболее известные и эффективные схемные решения построения широкополосных усилительных устройств на ПТ, а соотношения для расчета коэффициента усиления, полосы пропускания и значений элементов корректирующих цепей даны без выводов. Ссылки на литературу позволяют найти, при необходимости, доказательства справедливости приведенных соотношений.
Особо следует отметить, что в справочной литературе по отечественным ПТ [1, 2] не приводятся значения элементов эквивалентной схемы замещения ПТ. Поэтому при расчетах следует пользоваться параметрами зарубежных аналогов [2, 3] либо осуществлять проектирование на зарубежной элементной базе [3].
2 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТОВ
В соответствии с [4, 5, 6], предлагаемые ниже соотношения для расчета усилительных каскадов на ПТ основаны на использовании эквивалентной схемы замещения транзистора, приведенной на рисунке 2.1,а, и полученной на её основе однонаправленной модели, приведенной на рисунке 2.1,б.
|
|
а) | б) |
Рисунок 2.1
Здесь СЗИ – емкость затвор-исход, СЗС – емкость затвор-сток, ССИ – емкость сток-исток, RВЫХ – сопротивление сток-исток, S – крутизна ПТ, СВХ =.CЗИ +СЗС(1+SRЭ), RЭ=RВЫХRН/(RВЫХ+RН), RН – сопротивление нагрузки каскада на ПТ, CВЫХ=ССИ+СЗС.
3 РАСЧЕТ НЕКОРРЕКТИРОВАННОГО КАСКАДА С ОБЩИМ ИСТОКОМ
3.1 ОКОНЕЧНЫЙ КАСКАД
Принципиальная схема некорректированного усилительного каскада приведена на рисунке 3.1,а, эквивалентная схема по переменному току - на рисунке 3.1,б.
|
|
а) | б) |
Рисунок 3.1
В соответствии с [6], коэффициент усиления каскада в области верхних частот можно описать выражением:
, (3.1)
где
; (3.2)
; (3.3)
; (3.4)
; (3.5)
;
- текущая круговая
частота.
При заданном уровне частотных искажений
(3.6)
верхняя частота fВ полосы пропускания каскада равна:
, (3.7)
где
.
Входное сопротивление каскада на ПТ, без учета цепей смещения, определяется входной емкостью:
. (3.8)
Пример 3.1. Рассчитать fB, RC, CВХ каскада, приведенного на рисунке 3.1, при использовании транзистора КП907Б (СЗИ=20 пФ; СЗС=5 пФ; ССИ=12 пФ; RВЫХ=150 Ом; S=200 мА/В [7]) и условий: RН=50 Ом; YB=0,9; K0=4.
Решение.
По известным
K0
и S
из (3.2) найдем:
RЭ=20
Ом. Зная RВЫХ,
RН
и RЭ,
из (3.3) определим:
RС
= 43 Ом. По (3.4) и (3.5) рассчитаем:
С0=17 пФ;
=
.
Подставляя
известные
и YВ
в (3.7), получим:
fB=227
МГц. По формуле
(3.8) найдем: СВХ=45
пФ.
3.2 ПРОМЕЖУТОЧНЫЙ КАСКАД
Принципиальная схема каскада приведена на рисунке 3.2,а, эквивалентная схема по переменному току - на рисунке 3.2,б.
|
|
а) | б) |
Рисунок 3.2
Коэффициент усиления каскада в области верхних частот описывается выражением (3.1), в котором значения RЭ и С0 рассчитываются по формулам:
; (3.9)
, (3.10)
где СВХ – входная емкость нагружающего каскада.
Значения fB и СВХ каскада рассчитываются по соотношениям (3.7) и (3.8).
Пример 3.2. Рассчитать fB, RC, CВХ каскада, приведенного на рисунке 3.2, при использовании транзистора КП907Б (данные транзистора в примере 3.1) и условий: YB=0.9; K0=4; входная емкость нагружающего каскада - из примера 3.1.
Решение.
По известным
K0
и S
из (3.2) найдем:
RЭ=20
Ом. Зная RЭ
и RВЫХ,
из (3.9) определим:
RC=23
Ом. По (3.10) и (3.4) рассчитаем
С0=62 пФ;
=
.
Подставляя
известные
и YB
в (3.7), получим:
fB=62
МГц. По формуле
(3.8) найдем: СВХ=45
пФ.
3.3 РАСЧЕТ ИСКАЖЕНИЙ, ВНОСИМЫХ ВХОДНОЙ ЦЕПЬЮ
Принципиальная схема входной цепи каскада приведена на рисунке 3.3,а, эквивалентная схема по переменному току - на рисунке 3.3,б.
|
|
а) | б) |
Рисунок 3.3
Коэффициент передачи входной цепи в области верхних частот описывается выражением [6]:
,
где
; (3.11)
; (3.12)
;
СВХ – входная емкость каскада на ПТ.
Значение fB входной цепи рассчитывается по формуле (3.7).
Пример 3.3. Рассчитать K0 и fB входной цепи, приведенной на рисунке 3.3, при условиях : RГ=50 Ом; RЗ=1 МОм; YB=0,9; CВХ – из примера 3.1.
Решение.
По (3.11) найдем:
K0=1,
по (3.12) определим:
=
.
Подставляя
и YB
в (3.7), получим:
fB=34,3
МГц.
4 РАСЧЕТ КАСКАДА С ВЫСОКОЧАСТОТНОЙ ИНДУКТИВНОЙ КОРРЕКЦИЕЙ
Принципиальная схема каскада с высокочастотной индуктивной коррекцией приведена на рисунке 4.1,а, эквивалентная схема по переменному току - на рисунке 4.1,б.
|
|
а) | б) |
Рисунок 4.1
Коэффициент усиления каскада в области верхних частот можно описать выражением [6]:
,
где K0=SRЭ; (4.1)
;
;
;
;
;
.
Значение
,
соответствующее
оптимальной
по Брауде
амплитудно-частотной
характеристике
(АЧХ) [6], рассчитывается
по формуле:
. (4.2)
При заданном значении YB верхняя частота полосы пропускания каскада равна:
. (4.3)
Входная емкость каскада определяется соотношением (3.8).
При работе каскада в качестве предоконечного все перечисленные выше соотношения справедливы. Однако RЭ, R0 и С0 принимаются равными:
, (4.4)
где СВХ – входная емкость оконечного каскада.
Пример 4.1. Рассчитать fB, LC, RC, CВХ каскада, приведенного на рисунке 4.1, при использовании транзистора КП907Б (данные транзистора - в примере 3.1) и условий: YB=0,9; K0=4; каскад работает в качестве предоконечного; входная емкость нагружающего каскада - из примера 3.1.
Решение.
По известным
K0
и S
из (4.1) найдем:
RЭ=20
Ом. Далее по
(4.4) получим: RC=23
Ом; R0=
150 Ом; C0=62
пФ;
=
.
Подставляя
C0,
RC,
R0
в (4.2), определим:
LCопт=16,3
нГн. Теперь по
формуле (4.3) рассчитаем:
fB=126
МГц. Из (3.8) найдем:
CВХ=45
пФ.
5 РАСЧЕТ КАСКАДА С ИСТОКОВОЙ КОРРЕКЦИЕЙ
Принципиальная схема каскада с истоковой коррекцией приведена на рисунке 5.1,а, эквивалентная схема по переменному току - на рисунке 5.1,б.
|
|
а) | б) |
Рисунок 5.1
Коэффициент усиления каскада в области верхних частот можно описать выражением [6]:
,
где K0=SRЭ/F; (5.1)
; (5.2)
;
;
;
.
Значение С1опт, соответствующее оптимальной по Брауде АЧХ, рассчитывается по формуле:
. (5.3)
При заданном значении YB верхняя частота полосы пропускания каскада равна:
. (5.4)
Входная емкость каскада определяется соотношением:
. (5.5)
При работе каскада в качестве предоконечного все перечисленные выше соотношения справедливы. Однако RЭ и С0 принимаются равными:
, (5.6)
где СВХ – входная емкость оконечного каскада.
Пример 5.1. Рассчитать fB, R1, С1, СВХ каскада, приведенного на рисунке 5.1, при использовании транзистора КП907Б (данные транзистора - в примере 3.1) и условий: YB=0,9; K0=4; каскад работает в качестве предоконечного; входная емкость нагрузочного каскада - из примера 3.1.
Решение.
По известным
K0,
S,
RЭ
из (5.1), (5.2) найдем:
F=7,5
; R1=32,5
Ом. Далее получим:
С0=62 пФ;
=
.
Из (5.3) определим
С1опт=288
пФ. Теперь по
формуле (5.4) рассчитаем:
fB=64,3
МГц. Из (5.5) найдем:
СВХ=23,3
пФ.
6 РАСЧЕТ ВХОДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ
Из приведенных выше примеров расчета видно, что наибольшие искажения АЧХ обусловлены входной цепью. Для расширения полосы пропускания входных цепей усилителей на ПТ в [8] предложено использовать схему, приведенную на рисунке 6.1.
|
|
а) | б) |
Рисунок 6.1
Коэффициент передачи входной цепи в области верхних частот можно описать выражением:
,
где
; (6.1)
;
;
;
;
СВХ – входная емкость каскада на ПТ.
Значение L3опт, соответствующее оптимальной по Брауде АЧХ, рассчитывается по формуле:
. (6.2)
При заданном значении YB и расчете LЗопт по (6.2) верхняя частота полосы пропускания входной цепи равна:
. (6.3)
Пример 6.1. Рассчитать fB, RЗ, LЗ входной цепи, приведенной на рисунке 6.1, при условиях: YB=0,9; RГ=50 Ом; СВХ – из примера 3.1; допустимое уменьшение К0 за счет введения корректирующей цепи – 2 раза.
Решение.
Из условия
допустимого
уменьшения
К0 и
соотношения
(6.1) найдем: RЗ=50
Ом. Подставляя
известные СВХ,
RГ
и RЗ
в (6.2), получим:
LЗопт=37,5
нГн. Далее определим:
=
;
=
.
Подставляя
найденные
величины в
(6.3), рассчитаем:
fB=130
МГц.
7 РАСЧЕТ ВЫХОДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ
В рассматриваемых выше усилительных каскадах расширение полосы пропускания связано с потерей части выходной мощности в резисторах корректирующих цепей (КЦ) либо цепей обратной связи. От выходных каскадов усилителей требуется, как правило, получение максимально возможной выходной мощности в заданной полосе частот. Из теории усилителей известно [9], что для выполнения указанного требования необходимо реализовать ощущаемое сопротивление нагрузки для внутреннего генератора транзистора равным постоянной величине во всем рабочем диапазоне частот. Этого можно достигнуть, включив выходную емкость транзистора в фильтр нижних частот, используемый в качестве выходной КЦ. Схема включения выходной КЦ приведена на рисунке 7.1.
|
|
а) | б) |
Рисунок 7.1
При работе
выходного
каскада без
выходной КЦ
модуль коэффициента
отражения
ощущаемого
сопротивления
нагрузки внутреннего
генератора
транзистора
равен [9]:
. (7.1)
Уменьшение выходной мощности относительно максимального значения, обусловленное наличием CВЫХ, составляет величину:
,
(7.2)
где
–
максимальное
значение выходной
мощности на
частоте
при условии
равенства нулю
СВЫХ;
– максимальное
значение выходной
мощности на
частоте
при наличии
СВЫХ.
Использование
фильтра нижних
частот в качестве
выходной КЦ
при одновременном
расчете элементов
L1,
C1
по методике
Фано [9] позволяет
обеспечить
минимально
возможное,
соответствующее
заданным CВЫХ
и fB,
значение максимальной
величины модуля
коэффициента
отражения
в полосе частот
от нуля до fB.
В таблице
7.1 приведены
нормированные
значения элементов
L1,
C1,
CВЫХ,
рассчитанные
по методике
Фано, а также
коэффициент
,
определяющий
величину ощущаемого
сопротивления
нагрузки RОЩ,
относительно
которого вычисляется
[9].
Таблица 7.1
|
|
|
|
|
0,1 | 0,18 | 0,099 | 0,000 | 1,000 |
0,2 | 0,382 | 0,195 | 0,002 | 1,001 |
0,3 | 0,547 | 0,285 | 0,006 | 1,002 |
0,4 | 0,682 | 0,367 | 0,013 | 1,010 |
0,5 | 0,788 | 0,443 | 0,024 | 1,020 |
0,6 | 0,865 | 0,513 | 0,037 | 1,036 |
0,7 | 0,917 | 0,579 | 0,053 | 1,059 |
0,8 | 0,949 | 0,642 | 0,071 | 1,086 |
0,9 | 0,963 | 0,704 | 0,091 | 1,117 |
1,0 | 0,966 | 0,753 | 0,111 | 1,153 |
1,1 | 0,958 | 0,823 | 0,131 | 1,193 |
1,2 | 0,944 | 0,881 | 0,153 | 1,238 |
1,3 | 0,927 | 0,940 | 0,174 | 1,284 |
1,4 | 0,904 | 0,998 | 0,195 | 1,332 |
1,5 | 0,882 | 1,056 | 0,215 | 1,383 |
1,6 | 0,858 | 1,115 | 0,235 | 1,437 |
1,7 |
0,833 |
1,173 | 0,255 | 1,490 |
1,8 | 0,808 | 1,233 | 0,273 | 1,548 |
1,9 | 0,783 | 1,292 | 0,292 | 1,605 |
2,0 | 0,760 | 1,352 | 0,309 | 1,664 |
Истинные значения элементов рассчитываются по формулам:
(7.3)
Расчет частотных искажений, вносимых выходной цепью оконечного каскада, приведен в разделе 3.1. При использовании выходной КЦ частотные искажения, вносимые выходной цепью, определяются соотношением:
. (7.4)
Коэффициент усиления каскада с выходной КЦ определяется выражением (3.2).
Пример 7.1. Рассчитать выходную КЦ для усилительного каскада на транзисторе КП907Б (данные транзистора - в примере 3.1) при RН=50 Ом, fB=200 МГц. Определить RОЩ, уменьшение выходной мощности на частоте fB и уровень частотных искажений, вносимых выходной цепью при использовании КЦ и без нее.
Решение.
Найдем нормированное
значение СВЫХ:
=
=
=
1,07. Ближайшее
значение коэффициента
в таблице 7.1 равно
1,056. Этому значению
соответствуют:
=1,5;
=0,882;
=0,215;
=1,382.
После денормирования
по формулам
(7.3) имеем:
=35,1
нГн;
=24
пФ; RОЩ=36,2
Ом. Используя
соотношения
(7.1), (7.2), найдем, что
при отсутствии
выходной КЦ
уменьшение
выходной мощности
на частоте fB,
обусловленное
наличием СВЫХ,
составляет
2,14 раза, а при ее
использовании
- 1,097 раза. При
отсутствии
выходной КЦ
уровень частотных
искажений,
вносимых выходной
цепью, определяется
соотношением
(3.7). Для условий
примера 7.1
=
.
Подставляя
в (3.7) известные
и fB,
получим: YB=
=0,795.
При наличии
выходной КЦ
из (7.4) найдем: YB
= 0,977.
8 РАСЧЕТ ДИССИПАТИВНОЙ МЕЖКАСКАДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ ВТОРОГО ПОРЯДКА
Принципиальная схема усилителя с межкаскадной КЦ второго порядка приведена на рисунке 8.1,а, эквивалентная схема по переменному току - на рисунке 8.1,б. [10].
|
а) |
|
б) |
Рисунок 8.1
Коэффициент усиления каскада на транзисторе T1 в области верхних частот можно описать выражением [11, 12]:
, (8.1)
где K0=SRЭ; (8.2)
;
;
;
;
– сопротивление
сток-исток
транзистора
T1;
;
;
;
;
– нормированные
относительно
и
значения элементов
,
,
,
,
;
=
;
;
– нормированная
частота;
– текущая круговая
частота;
– высшая круговая
частота полосы
пропускания
разрабатываемого
усилителя;
– входная емкость
транзистора
Т2;
– выходная
емкость транзистора
T1.
В таблице
8.1 приведены
нормированные
значения элементов
,