Xreferat.com » Рефераты по радиоэлектронике » Радиолокационный приемник сантиметрового диапазона

Радиолокационный приемник сантиметрового диапазона

временных искажений сигнала, остановимся на наиболее существенном для приемников импульсных сигналов показателе - искажениях переднего фронта импульса. Распределение искажений этого вида по каскадам РПрУ можно выразить в величине времени установления переднего фронта импульса и записать следующим образом:

= 0,2 мкс


Искажения, вносимые входной цепью незначительны и составляют:

0,0064 мкс

УРЧ является инерционным звеном, поэтому искажения, вносимые им, довольно велики: 0,024мкс

Искажения, вносимые преобразователем частоты, составляют:

0,008мкс

Наибольшие искажения переднего фронта радиоимпульсов вносятся детектором из-за шунтирования выходного контура УПЧ входным сопротивлением детектора:

0,04мкс

Оставшееся искажение переднего фронта импульса вносится сравнительно узкополосным УПЧ. Определим допустимые искажения, приходящиеся на один каскад УПЧ:



4.8. Структурная схема РПрУ













Структурная схема радиоприемного устройства моноимпульсной РЛС сопровождения


Входная цепь (ВЦ)

Входная цепь приёмника обеспечивает защиту приемника от перегрузок и повреждения СВЧ мощностью сигнала, поступающего на рабочей частоте при работе на одну антенну с передатчиком. ВЦ связывает выход антенно-фидерного устройства со входом 1-ого каскада приёмника, в данном случае со смесителем. При этом вход и выход входной цепи должны быть согласованны с волновыми сопротивлениями присоединяемых к ним линий передач, чтобы в местах соединения не возникало отражений СВЧ энергии.

В нашем случае входная цепь должна выполнять следующие функции :

  • частотная селекция принимаемых сигналов для уменьшения помех на нерабочей частоте.

  • подавление зеркального канала.

  • защита 1-ого каскада приёмника от перегрузки и повреждения мощностью СВЧ сигналов, поступающих в приёмник на рабочих частотах .

Для защиты приёмника от перегрузок будем использовать антенный переключатель (АП) и устройство защиты приёмника (УЗП) .

Для выполнения ВЦ функций селекции и подавления шумов зеркального канала используем полосовой фильтр.


Преобразователь частоты (ПЧ)

Преобразователь частот (смеситель) РПрУ РЛС часто выполняется на диодах по балансной схеме. Для балансных смесителей на диодах с барьером Шотки (ДБШ) потери сигнала в сантиметровом и миллиметровом диапазоне составляют соответственно 5..8 и 6..10 дБ, а коэффициент шума - 6..9 и 7..12 дБ, что неприемлемо в нашем случае из-за отсутствия УРЧ в составе радиотракта.

В сантиметровом диапазоне используют ПЧ на биполярных транзисторах (БТ), которые обладают коэффициентом усиления 3-12 дБ и коэффициентом шума 1,7 - 4,6 дб. Однако лучшие характеристики во всем СВЧ диапазоне имеют ПЧ на полевых транзисторах (ПТ), так как в более широком диапазоне 1-15 ГГц они обеспечивают усиление 8-12 дб при коэффициенте шума 1,1 - 3,5 дб. К преимуществам смесителей на ПТ можно отнести более простые цепи смещения по постоянному току и более высокую температурную стабильность. Поэтому используем транзисторный преобразователь частоты на полевом транзисторе с барьером Шотки (ПТШ), усилительные и шумовые свойства которого, в основном, и определят чувствительность РПрУ.


Усилитель промежуточной частоты (УПЧ)

Основное усиление в РПрУ обеспечивается усилителем промежуточной частоты. Схемотехника каскадов этого устройства разнообразна, однако заметно упростить приёмник позволяет применение в качестве усилительных элементов аналоговых интегральных микросхем(ИМС).

Основные требования, предъявляемые к УПЧ - это малый коэффициент шума и достаточно высокий коэффициент усиления, а кроме того он должен обладать широким динамическим диапазоном, линейной ФЧХ и равномерной АЧХ в рабочем диапазоне частот, хорошо согласован, обладать высокой надёжностью.

В настоящее время в наибольшей мере этим требованиям удовлетворяют УПЧ на интегральных микросхемах. УПЧ с логарифмической амплитудной характеристикой (ЛАХ), который наилучшим образом выполняет усилительные функции при широком динамическом диапазоне входных сигналов, реализуем на ИМС.

Детектор(Д) импульсных сигналов

При детектировании импульсных сигналов разлиают два вида: пиковое и импульсное детектирование. В первом случае определяется только амплитуда импульсов, качество же воспроизведения формы их огибающей играет второстепенную роль.

В нашем случае импульсного детектирования необходимо воспроизвести огибающую каждого поступающего на детектор радиоимпульса. Для этого обычно применяется диодный детектор, постоянная величина времени (RC) нагрузки которого выбирается достаточно большой, так, чтобы в течение времени между радиоимпульсами напряжение на выходе не успевало заметно снизиться, а изменялось по закону огибающей последовательности радиоимпульсов. Наличие в схеме детектора реактивных элементов приводит к искажению формы импульсов, т.к. вызывает переходные процессы , за счет которых увеличивается время установления у и время спада сп импульсов на его выходе. Обеспечение минимальных искажений формы импульсов (у и сп), в заданных пределах, является главной задачей импульсного детектора. Желательно при этом получить высокий коэффициент передачи, но не за счет увеличения искажений сверх заданной величины.

Режим работы и параметры схемы импульсного детектора выбирается из условия обеспечения допустимых искажений формы импульсов.

Схемы пикового и импульсного детекторов аналогичны, отличие только в том , что постоянная времени нагрузки у пикового детектора на два, три порядка больше, чем у импульсного. В таких детекторах используют германиевые диоды.

4.9. Выбор элементной базы. Задания на разработку каскадов.

На частотах до 7 ГГц в транзисторных преобразователях широко используются биполярные транзисторы (БП), на более высоких частотах, включая миллиметровый диапазон - полевые транзисторы с барьером Шотки (ПТШ). Имея выбор между БП и ПТШ предпочтение отдают ПТШ, так как они обладают лучшими шумовыми и усилительными показателями, поэтому используем транзисторный преобразователь частоты на двухзатворном ПТШ. Для применения в смесителе был выбран арсенид-галиевый ПТШ АП 328-2, альтернативы которому отечественная промышленность не выпускает.


Исходные данные для расчёта:

Частота входного сигнала   fc = 1,3 ГГц=23см;

Коэффициент шума транзистора Штр=1,5 (ориентировочно)

Частота гетеродина fг = 1,27 ГГц


Для применения в УПЧ остановимся на отечественных ИМС серии К175. Серия ИМС 175 представляет собой комплект интегральных микросхем, предназначенных для применения в трактах промежуточной частоты радиолокационной и связной техники, а так же в других узлах РЭА.

ИМС К175УВ2 - универсальная усилительная схема, обладает следующими характеристиками:

Напряжение источника питания - 6,6 В

Ток потребления - 3,5 мА

Коэффициент усиления - 10

Входное сопротивление - 1 кОм

Выходное сопротивление - 1,9 кОм

Верхняя граничная частота - 40 МГц

Коэффициент шума - 10 дБ


ИМС К175УВ4 - универсальная усилительная схема, обладает следующими характеристиками:


Электрические параметры ИМС К175УВ4 при 25оС и Uпит=6,3 В:

  • ток потребления Iпот,мА при Uвх=0 В, не более.................1,8...3;

  • напряжения на выводах, В: 9.........................................3,5...4,5;

11...........................................2...2,9;

12........................................1,3...1,5;

13...........................................0,9...1,5;

между выводами 2 и 10............................................-2...+2;

  • крутизна вольт-амперной характеристики Sэ, мА/В,

    при Uвх=10 мВ и fвх=1 МГц.........................................................10;

  • коэффициент шума Kш, дБ при fвх=20 МГц, не более..................8;

  • верхняя граничная частота fв, МГц, при Uвх=10 мВ..................150.


Предельные эксплуатационные параметры ИМС К175УВ4:

  • напряжение питания Uпит, В: минимальное....................................3;

    максимальное.................................9,5;

    номинальное...................................6,3;

  • максимальное напряжение, В, на выводах: 2,10......................12,5;

13...........................1,2;

  • входное напряжение, В: синфазное........................................2...4,4;

дифференциальное.........................-2...+2;


Исходя из необходимости обеспечения таких параметров УПЧ, как

  • низкий коэффициент шума;

  • малые искажения переднего фронта радиоимпульсов;

  • заданный коэффициента усиления при минимальном числе каскадов

  • минимальную себестоимость (исходя из данных табл. 6.1),

для использования в УПЧ выбираем [7] ИМС К175 УВ 4 (рис.4.9.2).


Рис. 4.9.2: принципиальная схема ИМС К175УВ4


Назначение выводов: 1 - общий;

2 - выход 1;

3 - внутренний нагрузочный резистор 1;

4 - вход1;

5 - общая точка внутренних нагрузочных резисторов;

6 - вход 2:

7 - внутренний нагрузочный резистор 2;

8 - +Uпит;

9 - вывод делителя напряжения 1;

10 - выход 2;

11 - вывод делителя напряжения 2;

12 - вывод делителя напряжения 3;

13 - вход регулировки усиления;

14 - вывод установки и контроля режима.


Данные для расчёта:


Частота сигнала fпч = 30 МГц

Коэффициент усиления К= 6Ч103

Искажения переднего фронта импульса у = 0,09 мкс;

Для использования в детекторе из литературы [3] выбираем детектирующий полупроводниковый диод Д9Б, т.к. его характеристики удовлетворяют следующим требованиям:

fпч = 30 МГц < fд = 40 МГц;

Cд = 1...2 пФ;

Uпр = 0,9 В;

Iпр = 90 мА;

Ri = 10 Ом;

Uобрmax = 10 В;

Iобр = 250 мкА;

Rобр = 0,4 МОм.


Данные для расчёта:


Частота сигнала ПЧ fпч = 30 МГц;

Параметры входного контура Lк=50 нГн; Ск = 2 пФ;

Допустимые искажения импульса :

Время нарастания импульса у =0,2 мкс;

Время спада импульса сп = (0,3...0,5)и = (0,3...0,5)1 = 0,3 мкс;

UвхДет = 0,5 В;

Kд ~ 0,8 ...0,9.


5.Расчет элементов принципиальной схемы приемника

5.1. Антенный переключатель

Одним из основных узлов РЛП является антенный переключатель (АП).Антенные переключатели предназначены для коммутации передатчика к антенне на время прихода отраженных или ответных сигналов. Они должны: обеспечить уменьшение до минимума мощности излучаемого зондирующего импульса просачивающегося на на вход приемника; быть быстродействующими т.к. с увеличением времени срабатывания возрастает вероятность пробоя входных цепей приемника, а с увеличением времени востановления увеличивается минимальная дальность РЛС (мертвая зона обзора на малых расстояниях от РЛС); иметь минимальные потери мощности при излучении зондирующего импульса и особенно при приеме отраженного от цели сигнала; обладать большим сроком службы и высокой надежностью. Коммутационные АП состоят настроенных отрезков линий и газоразрядных приборов (разрядников), изменяющих сопротивление под действием мощных СВЧ сигналов. Разрядники включают в фидерный тракт РЛС параллельно или последовательно.

АП на необратимых элементах применяют в РЛС сантимитрового диапазона. В качестве необратимых элементов используют фидерные вентили и циркуляторы.

При расположении феррита волноводе , передаваемая по волноводу электромагнитная энергия. В зависимости от направления ее движения либо поглащается либо проходит практически без потерь. Феррит помещается в сильное поле постоянного магнита. При этом ферромагнитный резонанс наступает только при движении электромагнитной волны в одном направлении. При резонанасе практически вся СВЧ энергия в волноводе поглащается вентилем.

Выбор типа АП зависит отмощности излучаемого зондирующего импульса. При мощности импульса 100-150 КВт АП реализуют путем последующего соединения ферритового циркулятора, газового разрядника и диодного резонансного СВЧ ограничителя (рис. )

При мощности 1-2 КВт газовый разрядник не вводят в состав АП.

В АП (рис. ) используют два последовательно соединенных циркулятора Ц1 и Ц2. Сигнал от передатчика поступает на плече 1 циркулятора Ц1 и через плече 2 подается в антенну; при этом на выход плеча 3 сигнал от передатчика проходит с существенным ослаблением (13- 25 дб). Далее сигнал с плеча 3 циркулятора Ц1 подается через циркулятор Ц2 на разрядник Р, уменьшая его сопротивление до ноля. При этом СВЧ сигнал отражается от разрядника к плечу 2 циркулятора Ц2 и поглощается в согласованной нагрузке R. Зажигание разрядника Р спустя некоторое время ( с) после изменения зондирующего импульса. Выделяемая за это время энергия может вывести из строя последующие каскады приемника. Для предотвращения этого в схеме АП предусматривается СВЧ ограничитель, подключенный к основной линии в т.А через отрезок линии l = /2. Ограничитель состоит из последовательносоединенных диода Д и короткозамкнутого шлейфа длинной l2 с индуктивным реактивным сопротивлением, параллельно которым подключен разомкнутый емкостной шлейф длиной l1. При сигнале высокого уровня диод Д эквивалентен цепи из последовательносоединенных сопротивления и индуктивности.при этом между т.В и подложкой образуется параллельный резонансный контур,сопротивление которого при резонансе велико. Значит, четвертьволновый отрезок линии длинной l при высоком уровне сигнала работает практически в режиме холостого хода; входное сопротивление линии равно 0. Значит, сигнал просачивающийся в ограничитель отражается обратно в циркулятор Ц2. Полезный сигнал, отраженный от цели, поступает от антенны на плече 2 циркулятора Ц1, практически без ослаблений передается на плече 3 циркулятора Ц1 и далее через плечи 1 и 2 циркулятора Ц2 на разрядник Р. Мощность отраженного сигнала недостаточна для зажигания разрядника, вследствие чего принятый антенной сигнал передается по основной линии в последующие каскады приемника. Для сигнала малого уровня отрезок линии длинной l работает практически в режиме К.З.; входное сопративление этой линии равно бесконечности и энергия принятого сигнала проходит в последующие каскады РЛП практически без ослабления.

5.2.  Разрядники защиты приемника

Защиту триодов входного каскада РЛП отперегрузки и повреждения СВЧ сигналами (от собственного передатчика РЛС или от внешних источников помех) в полосе рабочих частот, как уже указывалось, обычно осуществляют разрядником защиты приемника (РЗП) и ограничителем СВЧ-мощности на полупроводниковых диодах.

РЗП описываются двумя группами параметров: параметрами низкого уровня мощности, характеризующими свойства РЗП в режиме приема слабых сигналов (СВЧ разряда нет), и параметрами высокого уровня мощности характеризующими его защитные свойства при воздействии на него мощных импульсов СВЧ (происходит СВЧ разряд).

К параметрам низкого уровня мощности относятся:

  • полоса рабочих частот Праб= fmax - fmin, выраженная в процентах по отношению к средней частоте рабочего диапазона Праб, % ;

  • потери в режиме приема Lпр, дБ;

  • коэффициент стоячей волны КСВ.

Основными параметрами высокого уровня мощности являются:

  • максимально допустимая импульсная мощность Pи(кВт)на входе РЗП;

  • мощность зажигания Pзаж (мВт) - максимальная импульсная мощность, на выход ЗП;

  • энергия пика Wп (Дж) и мощность плоской части Pпл (мВт) СВЧ импульса, просачивающаяся через РЗП во время его горения;

  • время восстановления РЗП tв (мкс),

  • характеристика времени tG после окончания вх.импульса СВЧ, в течение которого потери снизятся до условной величины Lпр + G (дБ).

Диодный ограничитель, в отличае от РЗП, не требует никаких питающих напряжений и поэтому обеспечивает защиту как при включенной, так и при выключенной аппаратуре. Он характеризуется двумя состояниями: состоянием пропускания при малой мощности сигнала, т.е. на низком уровне мощности (потери пропускания Lпр малы), и при состоянием запирания при большой мощности сигнала, т.е. на высоком уровне мощности (потери запирания Lзап велики).

5.3. Входная цепь

В используемом диапазоне частот в силу особенностей несимметричных полосковых волноводов [9] наиболее перспективно использование согласующих цепей на микрополосковых линиях. Основными характеристиками микрополосковой линии, сечение которой показано на ( рис.5.1.1, б) являются: волновое сопротивление и эффективная диэлектрическая проницаемость, которые зависят от толщины подложки Н, ширины микрополосковой линии Е, толщины металлизированного слоя t и относительной диэлектрической проницаемости . Из соображений технологичности широкое применение в качестве полосовых фильтров (ПФ) находит связанная система из резонансных полуволновых разомкнутых резонаторов [3]:





Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: