Статистика

сумма вариантов, N – их число – применяется обычно для совокупностей численностью N15.

Для массовых статистических совокупностей рассчитывается взвешенная средняя арифметическая по формуле: , где - частоты.

Пример: Расчет средней выработки рабочими токарного цеха.

Количество деталей,

изготовленных рабочим

за смену, шт.

Число рабочих,

чел.,

Объем производства,

До 300 3 290 870
300-320 9 310 2790
320-340 15 330 4950
340-360 12 350 4200
360-380 6 370 2220
Свыше 380 6 390 2340
Итого 51
17370

Из таблицы:

  1. Средняя величина всегда тяготеет к вариантам с наибольшими частотами.

  2. Средняя величина может не совпадать ни с одним из вариантов дискретного ряда.

  3. Средняя величина находится внутри интервала значений вариантов ряда.

Сумма помимо чисто математического, как правило, имеет смысловое значение, наличие смыслового значения – один из способов проверки правильности выбора средней.

Даже если варианты ряда представлены целыми числами, среднее может быть смешанным числом, иногда такой результат логически неправомерен. В этом случае его надо округлять, переводить в проценты или в промили.


3. Свойства средней арифметической величины.

Свойства средней важны для понимания механизма расчета этого показателя, а так же для разработки ряда более сложных статистических методик.

Свойства:

  1. Если из всех вариантов ряда вычесть или ко всем вариантам добавить постоянное число, то средняя арифметическая соответственно уменьшится или увеличится на это число. .

  2. Если все варианты ряда умножить или разделить на постоянное число, то средняя арифметическая соответственно увеличится или уменьшится в это число раз. .

  3. Если все частоты увеличить или уменьшить в постоянное число раз, то средняя от этого не изменится. .

  4. Сумма отклонений всех вариантов ряда от средней арифметической равна 0. (Нулевое свойство средней). .

  5. Общая средняя совокупности равна средней арифметической из частных средне взвешенных по объемам частных совокупностей. , где - средняя арифметическая частных групп, - численность соответствующих групп, - общая средняя.

  6. Сумма квадратов отклонений всех вариантов ряда от средней арифметической меньше суммы квадратов их отклонений от любого другого постоянного числа.

Средний квадрат отклонений вариантов ряда от произвольного числа А равен дисперсии плюс квадрат разности между средней и этим числом А.

Данное свойство положено в основу метода наименьших квадратов, который широко применяется в исследовании статистических взаимосвязей.


4. Практическое использование свойств средней арифметической.

Свойства средней арифметической используются так же для упрощения методики ее расчета. В условиях малопроизводительной вычислительной техники эта методика обеспечивала значительную экономию времени и труда. В настоящее время данная методика служит наглядным образцом иллюстрации свойств средней.

Упрощенная методика расчета средней арифметической

(по данным о выработке рабочих токарей).

290 3 -40 -2 1 -2
310 9 -20 -1 3 -3
330 15 0 0 5 0
350 12 20 1 4 4
370 6 40 2 2 4
390 6 60 3 2 6

51

17 9

Данный метод называется так же методом расчета от условного нуля. В качестве условного нуля выбирается произвольное постоянное число А. Обычно это вариант ряда с наибольшей частотой. А=330.

Рассчитываем среднюю по новым вариантам: .

Пользуясь свойствами средней переходим от условного к фактической средней величине .


5. Степенные средние.

Средняя арифметическая величина является частным случаем, который называется степенной средней.

- для несгруппированных данных;

- для сгруппированных данных.

Последовательно придавая k дискретное значение 0, 1, 2, 3, … и т.д. получим различные виды средних.

Если k=-1 степенные средние приобретают вид средней гармонической.

- для несгруппированных данных;

- для сгруппированных данных.

Пример: В течение рабочей смены 3 рабочих изготовляли детали. 1й рабочий затрачивая на изготовление 1 детали – 6 мин., 2й – 8 мин., 3й – 7,5 мин. Определить средние затраты времени на изготовление 1 детали.

Среднюю арифметическую взвешенную нельзя использовать для расчета, так как каждый из рабочих изготавливал за смену разное количество деталей. В числителе формулы отражается количество человеко-силы, а в знаменателе условное количество деталей, изготавливаемых за смену.

Пример: Продавец в течении нескольких дней продавал на рынке морковь. В первые 4 дня цена составляла 6 руб./кг, в последние 5 дней цена поднялась до 7 руб., а оставшаяся морковь была продана за 4,50 руб./кг. Поскольку данные о товарообороте отсутствуют, то для решения задачи применяется средняя гармоническая взвешенная:

При этом число дней продаж моркови по различным ценам рассматривается как показатель условного товарооборота.

Средняя гармоническая применяется в тех случаях, когда частоты ряда выражены в неявном виде.

Если величина k=0, то степенная средняя приобретает вид средней геометрической.

для несгруппированных данных;

для сгруппированных данных.

Средняя геометрическая применяется в тех случаях, когда отдельные варианты ряда резко отличаются от остальных.

Наиболее часто формулу средней геометрической используют для определения средних валютных курсов, эффективности валютных курсов, реальной эффективности валютных курсов (международная финансовая статистика).

Если k=1 степенная средняя принимает вид средней арифметической, взвешенной и невзвешенной.

Если k=2, средняя квадрата.

для несгруппированных данных;

- для сгруппированных данных.

Результаты статистического исследования зависят от того, насколько верно избран вид средней. Расчет средних, выполненных на основе одних и тех же данных разными способами дает различные результаты.

В курсе математической статистики доказано, что чем ниже степень средней, тем меньше ее величина. Это называется правилом мажорантности средней.

k -1 0 1 2

<

<

<

Доказано так же, что чем интенсивней колеблются значения вариантов ряда, тем больше разница между ними.


6. Мода и процентили.

Наряду со средними для характеристики распределения применяют такие показатели как мода и процентили, которые дополняют характеристику (обобщающую) и позволяют сравнивать между собой и находить различия в рядах с одинаковыми средними.

Мода – это наиболее часто встречающийся вариант ряда.

В дискретных рядах распределения модой является вариант, имеющий максимальную частотную характеристику.

В интервальных рядах мода определяется в два этапа. В начале определяется интервал, содержащий моду (модальный интервал), а затем рассчитывается значение моды по формуле:

, где - нижняя граница модального интервала, i – величина этого интервала, , , - частоты модального, предшествующего ему и следующего за ним интервалов.


Для последней таблицы (данные о выработке рабочих токарей):

Медиана (вид процентиля), который занимает серединное положение в ряду распределения. Медиана определяется по формуле:

, где - нижняя граница интервала, содержащего медиану (интервал определяется по накопленной частоте, первой превышающей 50% суммы частот (в дальнейшем для квартилей, децилей – 25%, 75%, 0,1%, 0,2% и т.д.)), i – величина этого интервала, - номер медианы, - накопленная частота интервала, предшествующего медиане, - частота медианного интервала.

Поскольку медиана разновидность процентиля то данная формула носит универсальный характер, она может применяться для определения квартилей (Q) и децилей (d).

Квартили (четверти) отсекают от совокупности соответственно 25%, 50% и 75%.

Децили отсекают от совокупности соответственно 10%, 20%, 30% и т.д.

На первом этапе определяется номер процентиля по формуле:

- для ряда четным числом единиц;

- с нечетным числом единиц.

- номер процентиля (порядковый), - индекс процентиля (выражается десятичной дробью) (), N – численность совокупности.

Расчет моды и процентилей

на примере группировки магазинов по сумме товарооборота.

Группы магазинов

с торговой площадью,

кв. м

Число

магазинов,

Накопленная

частота,

До 100 6 6
100-200 12 18
200-300 27 45
300-400 13 58
400-500 8 66
Свыше 500 5 71
Итого 71

Накопленная частота – это сумма частот данного и всех предшествующих ему интервалов.

Четверть всех магазинов имеет площадь менее 200 кв. метров, а остальные 75% более 200 кв. метров.

Три четверти магазинов имеют торговые площади не превышающие 369,2 кв. метров, остальные больше.


Показатели вариации.

  1. Понятие вариации и роль ее изучения в статистических исследованиях.

  2. Измерители вариации.

  3. Прямой способ расчета показателей вариации.

  4. Свойства дисперсии и среднего квадратического отклонения.

  5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.

  6. Относительные показатели вариации.

  7. Стандартизация данных.

  8. Моменты распределения.

  9. Показатели асимметрии и эксцесса.

  10. Средняя арифметическая и дисперсия альтернативного признака.


1. Понятие вариации и роль ее изучения в статистических исследованиях.

Вариация – это колеблемость значений признака у отдельных единиц совокупности.

Наличию вариации обязана своим появлением статистика. Большинство статистических закономерностей проявляется через вариацию. Изучая вариацию значений признака в сочетании с его частотными характеристиками, мы обнаруживаем закономерности распределения (например: население по возрасту, студентов по уровню оценок).

Рассматривая вариацию одного признака параллельно с изменением другого, мы обнаруживаем взаимосвязи между этими признаками или их отсутствие (например: зависимость между торговой площадью и товарооборотом).

Вариации в статистике проявляются двояко, либо через изменения значений признака у отдельных единиц совокупности, либо через наличие или отсутствие изучаемого признака у отдельных единиц совокупности.

Изучение вариации в статистике имеет как самостоятельную цель, так и является промежуточным этапом более сложных статистических исследований.


2. Измерители вариации.

Простейшим показателем вариации является размах колебаний: .

Достоинство этого показателя простота расчета, возможность использования для оценки вариации однородных совокупностей. Недостаток – неприемлемость для неоднородных совокупностей с редкими выбросами крайних значений признака.

Частично недостатки этого показателя устраняет межквартельный размах: . Однако, он характеризует вариацию только половины совокупности.

Для учета колеблемости всех значений признака применяют показатели среднего линейного отклонения, дисперсии и средне квадратического отклонения.

Средне линейное отклонение – среднее значение отклонений всех вариантов ряда от средней арифметической (иногда от моды или медианы):

- для несгруппированных данных;

- для сгруппированных данных.

Аналогичным по смыслу среднему линейному отклонению является показатель дисперсии и рассчитываемый на его основе показатель средне квадратического отклонения.

Дисперсия – рассеивание, данный показатель характеризует рассеивание значений признака относительно его средней величины.

- для несгруппированных данных;

- для сгруппированных данных.

Дисперсия – средне квадратическое отклонение всех вариантов ряда от средней арифметической. Если извлечь квадратный корень из дисперсии, получим средне квадратическое отклонение.

- для несгруппированных данных;

- для сгруппированных данных.

Несмотря на логическое сходство, дисперсия является более чувствительной к вариации и, следовательно, чаще применяемый показатель.


3. Прямой способ расчета показателей вариации.

Расчет показателей вариации заработной платы работников завода.

Группы со среднемесячной з/п, руб.

Число раб-в,

До 1500 30 750 22500 1909,09 57272,7 3644628 109338843
1501-3000 75 2250 168750 409,09 30681,8 167355 12551653
3001-4500 45 3750 168750 1090,91 49090,9 1190083 53553719
Свыше 4501 15 5250 78750 2590,91 38863,6 6712810 100692149
Итого 165
438750
175909
276136364

Заработная плата каждого из работников в среднем отклоняется от средне заработной платы на 1066,12 руб.

Средне квадратическое отклонение заметно больше, чем аналогичный ему по смыслу среднее линейное отклонение.


4. Свойства дисперсии и среднего квадратического отклонения.

Так же как и средняя дисперсия обладает рядом свойств, имеющих важное значение для понимания сущности этого показателя, методологии его расчета и практического использования для разработки более совершенных статистических методов.

Свойства дисперсии и средне квадратическое отклонение:

  1. Если все варианты ряда уменьшить или увеличить на постоянное число, то величина дисперсии и средне квадратического отклонения не изменится. ;

  2. Если все варианты ряда умножить или разделить на постоянное число, дисперсия соответственно увеличится или уменьшится в квадрат этого числа раз, а средне квадратическое отклонение в это число раз. ;

  3. Если частоты ряда уменьшить или увеличить в постоянное число раз, то дисперсия и средне квадратическое отклонение от этого не изменится;

  4. Дисперсия равна среднему квадрату вариантов ряда минус квадрат средней арифметической. ;

  5. Общая дисперсия равна средней арифметической из частных дисперсий (внутригрупповых дисперсий) плюс дисперсии частных средних (межгрупповые дисперсии). Это свойство называется правилом сложения дисперсий, которое широко применяется в выборочном методе, методе измерений взаимосвязей явлений, а так же дисперсионном анализе.

- общая дисперсия;

- частная дисперсия;

- средняя из частных дисперсий, - численность соответствующей группы;

- межгрупповая дисперсия;


5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.

Свойства дисперсии используются для упрощения методики ее расчета. В условиях развитой вычислительной техники данный способ имеет, прежде всего, иллюстративный характер и помогает понять сущность этого показателя.

Упрощенный способ расчета дисперсии и средне квадратического отклонения (метод расчета от условного нуля).

Среднемесячная з/п работников, руб.,

750 30 - 1 500 -1 2 -2 2
2 250 75 0 0 5 0 0
3 750 45 1 500 1 3 3 3
5 250 15 3 000 2 1 2 4
Итого


11 3 9

А=2250; k=1500; с=15


6. Относительные показатели вариации.

Абсолютные измерители вариации (дисперсия, средне квадратическое отклонение) ограниченно пригодны для сравнительного анализа вариаций различных совокупностей.

Для цели сравнительного анализа применяют относительные показатели, коэффициенты вариации. Наиболее распространенной формой коэффициентов вариации является , он показывает, какой процент от средней арифметической составляет среднее квадратическое отклонение.

Вместо средне квадратического в числителе коэффициента вариации иногда используют среднее линейное отклонение .

Если среднее линейное отклонение определялось относительно медианы или моды, то соответствующие показатели вариации будут выглядеть , .

Коэффициенты вариации определенные по различным основаниям не одинаковы, поэтому, сопоставляя вариации разных совокупностей, нужно использовать коэффициенты вариации, рассчитанные по одной и той же величине.

Коэффициент вариации является так же количественной мерой однородности совокупности. Принято считать, что если , то совокупность количественно однородна. Чем меньше, тем лучше.


7. Стандартизация данных.

Коэффициенты вариации являются сводными оценками вариаций различных совокупностей. Однако они не позволяют сопоставить между собой значения признака у отдельных или групп единиц разных совокупностей.

Для подобных сравнений прибегают к стандартизации вариантов разных совокупностей по формулам:

, где , - это стандартизированные значения вариантов ряда x и y соответственно. В процессе стандартизации мы переходим от измерения вариантов в натуральных или стоимостных единицах к их измерению величинами соответствующих средне квадратических отклонений.

Пример: Стандартизация данных о доходах на одного члена семьи и среднедушевом потреблении мяса.

Доход на

одного

члена семьи,

тыс. руб./год,

Среднедушевое потребление

мяса,

60,7 12,3 -97,5 -25,6 9 506,25 655,36 -1,28 -1,31
84,2 19,1 -74 -18,8 5 476,00 353,44 -0,97 -0,96
112,4 23,1 -45,8 -14,8 2 097,64 219,04 -0,60 -0,76
144,5 35,6 -13,7 -2,3 187,69 5,29 -0,18 -0,12
180,1 49,5 21,9 11,6 479,61 134,56 0,29 0,59
240,9 57,3 82,7 19,4 6 839,29 376,36 1,09 0,99
284,6 68,4 126,4 30,5 15 976,96 930,25 1,66 1,56

1107,4

265,3



40 563,44

2 674,30




При стандартизации сгруппированных данных наряду с масштабированием вариантов ряда величинами соответствующих средне квадратических отклонений частоты этих рядов пересчитываются в частости.

Стандартизацию данных проводят, когда варианты сравниваемых рядов отличаются единицами измерения и порядком.

Стандартизация является важнейшим статистическим промежуточным этапом.

Стандартизация используется так же хорошо в теории выборочного метода.


8. Моменты распределения.

Моменты распределения составляют алгоритмическую основу многих статистических методов. Различают:

  • Произвольные (общий случай);

  • Начальные;

  • Центральные;

  • Стандартные (частный случай).

Выделяют:

    • Взвешенные;

    • Невзвешенные.

Произвольным моментомk-го порядка называется среднее значение k-ой степени отклонения всех вариантов ряда от произвольного постоянного числа.

- для несгруппированных данных;

- для сгруппированных данных.

При этом k принимает целочисленное значение от 1 до 4.

Если А=0, то произвольный момент преобразуется в начальный момент.

- для несгруппированных данных;

при k=1 M1=

при k=2 M2=

- для сгруппированных данных.

Если А=, произвольный момент преобразуется в центральный момент распределения.

- для несгруппированных данных;

- для сгруппированных данных.

При k=1 M1=0

При k=2 M2=

Стандартные моменты это начальные моменты из стандартных отклонений.

- для несгруппированных данных;

- для сгруппированных данных.

Стандартный момент k-го порядка это отношение центрального момента того же порядка к средне квадратическому отклонению в k-ой степени.

Так же как средняя арифметическая величина и дисперсия, центральные и стандартные моменты обладают рядом свойств, которые по сути ближе всего к свойствам дисперсии.


9. Показатели асимметрии и эксцесса.

При анализе распределений помимо графического изображения характер распределения можно выяснить, рассчитывая такие показатели, как асимметрия и эксцесс.

В качестве показателя асимметрии используют стандартный момент 3-го порядка. Если распределение симметрично относительно средней то показатель асимметрии равен нулю.

Если показатель асимметрии больше 0, то есть преобладают положительные отклонения от среднего, то наблюдается правосторонняя асимметрия, то есть преобладание в совокупности вариантов ряда превышающих среднюю.

Если же показатель асимметрии меньше 0, налицо левосторонняя асимметрия, то есть превышение численности вариантов ряда меньше чем средняя.

Показатель эксцесса характеризует степень колеблемости исходных данных, чем сильнее вариация, тем более пологой является кривая распределения и наоборот, чем однороднее совокупность, тем в большей степени варианты ряда сконцентрированы около средней и тем более островершинней будет кривая распределения.

В качестве эталона высоты распределения в статистике принимается кривая нормального распределения. Доказано, что стандартный момент 4-го порядка у этой кривой равен 3.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: