Xreferat.com » Рефераты по строительству » Проектирование сборного перекрытия

Проектирование сборного перекрытия

1. Компоновка конструктивной схемы сборного перекрытия


При заданной сетке колонн необходимо обосновать направление и шаг ригелей, основные размеры ригелей и плит.

Выбор направления и шага ригелей производим на основании следующих требований:

направление ригелей для всего перекрытия целесообразно принимать одинаковым и выбирать с учетом светотехнических соображении - лучше если оно совпадает со световым потоком;

расположение ригелей в поперечном направлении обычно позволяет создать более жесткую конструктивную схему здания;

шаг ригелей равен шагу колонн.

С этих позиций в курсовом проекте принимаем поперечное направление ригелей.

Тип поперечного сечения ригеля зависит от назначения здания и величины нагрузки. Для гражданских зданий принимаем тавровое сечение ригеля.

Высоту ригеля h принимаем


h = (1/10– 1/15)l,


где l—величина пролета ригеля, l = 5,4 м.


Проектирование сборного перекрытия

Рис.1.Поперечное сечение ригеля

Принимаем h = 0,45м. Ширину ригеля принимаем b = 0.2м. Другие размеры принимаем по существующим типовым решениям: hп = 0,22 м, ск = 0,10 м.

Ширину плит перекрытия выбираем так, чтобы оси надколонных плит совпадали с осями колонн, а число типоразмеров плит было минимальным. Их ширина должна быть принята кратной 10 см в пределах 0,8-1,6 м; число

типоразмеров плит не более трех (рядовые, надколонные, пристенные). Высоту плиты принимаем типовой, равную h = 22 см.


Проектирование сборного перекрытия

Рис. 2. План сборного перекрытия

2. Расчет и конструирование многопустотной плиты


2.1 Конструктивное решение


В курсовой работе разрабатываем одну из плит перекрытия. Она опирается на ригели короткими сторонами и рассчитывается как балка двутаврового профиля, свободно лежащая на двух опорах.

Предварительно уточняем размеры поперечного сечения плиты и приводим его к эквивалентному двутавровому на основе следующих конструктивных требований:

-конструктивная ширина плиты понизу на 1 см меньше номинальной;

-диаметр, количество и размещение пустот назначаем из условия максимального снижения веса плиты, при этом толщина бетона выше и ниже пустот должна быть не менее 25-30 мм, а между пустотами -30-35 мм;

-контуры продольных боковых поверхностей плит устраиваем с выступами для улучшения заполнения швов бетоном;

- для удобства расшивки швов и во избежание местных околов на нижних поверхностях продольных боковых граней плит устраиваем продольные фаски размером 15. Кроме того, для обеспечения совместной работы плит в составе диска перекрытия на их боковых поверхностях устраиваем круглые углубления (шпонки).


Проектирование сборного перекрытия

Рис.3.Поперечное сечение многопустотной плиты

Приведение сечения плиты к двутавровому осуществляем путем вычитания суммы ширины квадратных пустот, эквивалентных по площади круглым (a = 0.9d). Основные размеры двутаврового сечения следующие:

Проектирование сборного перекрытия-ширина верхней полки – b’f = 1060мм, нижней – bf = 1060мм.

-высота верхней и нижней полки – h’f = hf = мм

- ширина ребра b = b’f – 0.9*n*d = 1060 – 0.9*5*160 = 340 мм.

Проектирование сборного перекрытия

Рис.4.Эквивалентное двутавровое сечение плиты


Расчетный пролет плиты l0 при шаге колонн B = 5,7 м, ширине ригеля

b = 0.2 м, ширине консоли Ck = 0.1 м определим по рис. 5


l0 = B – b - Ck - 0.04 = 5,7 – 0.2 – 0.1 – 0.04 = 5,36 м,


Длина плиты


lпл = B – b – 0.04 = 5,7 – 0.2 –0,1 - 0.04 = 5,36 м.


Проектирование сборного перекрытия

Рис.5.Копределению расчетного пролета плиты

2.2 Статический расчет плиты


Расчетные нагрузки на 1 м2 плиты определяем в табличной форме (табл.1).

Нагрузку от веса многопустотной плиты принимаем равной 3 кПа, коэффициент надежности по нагрузке γf = 1.1.

Нормативную нагрузку от веса перегородок на 1 м2 перекрытия принимаем равной 1,5 кПа, коэффициент надежности по нагрузке γf = 1.2.

Для определения нагрузки от собственного веса пола задаемся его составом. Нагрузку от собственного веса пола принимаем равной произведению толщины элемента пола на объемный вес материала. Объемный вес материалов определяем по таблице 1.1 [6] , коэффициенты надежности по нагрузке в соответствии с таблицей 1.3 [6].

Временную нормативную нагрузку определяем в соответствии с назначением здания по таблице 1.2 [6], примем назначение здания – налоговая, тогда временная нагрузка составляет 2,0 кПа.

Коэффициент надежности здания по назначению определяем в соответствии с таблицей 1.4 [6].

Затем определяем полную расчетную нагрузку на 1 погонный метр плиты


qп = q* bп = 8,67 * 1,1 = 9,54 кН/м


где bп - номинальная ширина плиты, bп = 1,1 м.

Максимальные расчетные изгибающий момент и поперечная сила


Проектирование сборного перекрытия

Проектирование сборного перекрытия

где l0 - расчетный пролет плиты.


Таблица 1. Расчетные нагрузки на 1 м2 плиты

Вид нагрузки

Нормативная

нагрузка, кПа

γf γn Расчетная нагрузка, кПа
1. Постоянная



Вес перегородок 1,5 1,2 0,95 1,71
Вес пола 1,25

1,425

- линолеум, δ = 0,005 м,

γ = 18кН/м

0,09 1,2 0,95 0,1026
- цементная стяжка, δ = 0,03 м, γ = 22 кН/м 0,44 1,3 0,95 0,5134
- керамзитобетон, δ = 0,06 м, γ = 12 кН/м 0,72 1,3 0,95 0,8892
Вес многопустотной плиты 3 1,1 0,95 3,14
Итого 6,054

6,39
2. Временная 2 1,2 0,95 2,28
3. Полная 7,75

8,67

2.3 Конструктивные расчеты плиты


Принимаем тяжелый класса В25, класс продольной рабочей арматуры А800, поперечной В – 500. Выполняем расчеты плиты по прочности.


2.3.1 Подбор продольной арматуры

По таблице 3.4 [6] определяем расчетное сопротивление бетона осевому сжатию, Rb = 14.5 МПа. По таблице 3.8[6] находим расчетное сопротивление продольной арматуры осевому растяжению, Rs = 695 МПа.

Находим рабочую высоту сечения Проектирование сборного перекрытия, где a – защитный слой бетона, а= 3 см, Проектирование сборного перекрытия. Проверяем выполнение условия


Проектирование сборного перекрытия

Проектирование сборного перекрытия

Проектирование сборного перекрытия

- условие выполняется, следовательно, нейтральная ось находится в полке, сечение рассчитываем как прямоугольное шириной b’f.

Определяем


Проектирование сборного перекрытия


По таблице 3.11 [6] определяем x = 0,07 ; h = 0,965

Определяем ω0 = 0,85-0,008*Rb = 0,85-0,008*14,5 = 0,734

Вычисляем граничную относительную высоту сжатой зоны бетона


Проектирование сборного перекрытия


Проверяем условие x ≤ xR,

0,07 < 0,93; т.к. условие выполняется, то сжатая арматура по расчету не требуется.

Вычисляем требуемую площадь продольной рабочей арматуры


Проектирование сборного перекрытия


Подбираем по сортаменту (таблица 3.13 [6]) 4 стержня диаметром 10 мм из арматуры класса А800, Аs= 3,14 см2.

Проверяем процент армирования


Проектирование сборного перекрытия

2.3.2 Подбор поперечной арматуры

По таблице 3.4 [6] определяем расчетное сопротивление бетона осевому растяжению, Rbt = 1,05 МПа. По таблице 5.85[5] находим расчетное сопротивление поперечной арматуры осевому растяжению, Rsw = 290 МПа.

Проверяем условие достаточной прочности наклонных сечений при действии главных сжимающих напряжений


Проектирование сборного перекрытия

Проектирование сборного перекрытия

Проектирование сборного перекрытия,


т.к. условие выполняется, то размеры поперечного сечения элемента достаточны.

Проверяем условие необходимости постановки поперечной арматуры по расчету


Проектирование сборного перекрытия

Проектирование сборного перекрытия


Поперечная арматура по расчету не требуется. Конструктивно устанавливаем 4 каркаса Ж 3 В 500.Шаг поперечных стержней назначаем, исходя из конструктивных требований: S Ј 0.5*h и S Ј 300 мм,

S = 0.5*220=110 мм. Окончательно принимаем S = 100 мм.


2.3.3 Определение геометрических характеристик сечения плиты

По таблице 3.5[6] определяем модуль деформации бетона, Eb =27 МПа и Es =19 МПа. Вычисляем коэффициент приведения арматуры к бетону

Проектирование сборного перекрытия


Вычисляем площадь приведенного двутаврового сечения (рис.4)


Проектирование сборного перекрытия


Статический момент приведенного сечения относительно нижней грани


Проектирование сборного перекрытия


где а – расстояние от центра тяжести продольной растянутой арматуры до нижней грани плиты, а = 3 см.


Проектирование сборного перекрытия


Расстояние от центра тяжести приведенного сечения до нижней грани


Проектирование сборного перекрытия


Момент инерции приведенного сечения относительно центра тяжести


Проектирование сборного перекрытия

Проектирование сборного перекрытия


Момент сопротивления приведенного сечения относительно растянутой грани


Проектирование сборного перекрытия


2.3.4 Величина и потери предварительного напряжения арматуры

Величину предварительного напряжения продольной растянутой арматуры назначаем из условий


Проектирование сборного перекрытия ; Проектирование сборного перекрытия


где Rs,ser - расчетное сопротивление продольной растянутой арматуры для второй группы предельных состояний, которое определяем по таблице 3.6[6], Rs,ser=785МПа

Метод предварительного напряжения арматуры принимаем электротермический, а величину P определяем по формуле


Проектирование сборного перекрытия


где l- длина стержня (плиты), l = 5.46 м.


Проектирование сборного перекрытия

Проектирование сборного перекрытия


Принимаем ssp = 520 МПа.

Арматура плиты - стержневая, ее натяжение предусматривается на упоры, бетон - тяжелый, подвергнутый тепловой обработке в камерах. В этом случае будут следующие потери предварительного напряжения.

- от релаксации напряжений в арматуре Проектирование сборного перекрытия

- от быстронатекающей ползучести:

Проектирование сборного перекрытия при Проектирование сборного перекрытия,где Rbp – передаточная прочность бетона, которую принимаем из условия


Проектирование сборного перекрытия

Проектирование сборного перекрытия


a - коэффициент, принимаемый a= 0,25 + 0,025 Rbp, но не более 0,8


Проектирование сборного перекрытия


sbp - напряжения в бетоне от усилия предварительного обжатия на уровне центра тяжести арматуры


Проектирование сборного перекрытия,

Проектирование сборного перекрытия

Проектирование сборного перекрытия

Проектирование сборного перекрытия

Проектирование сборного перекрытия,


следовательно,


Проектирование сборного перекрытия


- от усадки бетона s8 = 35 МПа;

-от ползучести бетона


Проектирование сборного перекрытия, при Проектирование сборного перекрытия,


где a1= 0,85 - коэффициент, принимаемый для бетона, подвергнутого тепловой обработке.


Проектирование сборного перекрытия


Полные потери


Проектирование сборного перекрытия.


2.3.5 Расчет по образованию нормальных трещин

Категория трещиностойкости плиты - третья. В ней при действии полной нормативной нагрузки допускается образование и ограниченное по ширине раскрытие трещин.

При статическом расчете плиты (п. 2. 2) установлены значения нормативных нагрузок: постоянных - gn = 6,054 кН/м2 и временных – pn = 2,0 кН/м2.

Погонные нагрузки на плиту: Проектирование сборного перекрытия; Проектирование сборного перекрытия, где bn - номинальная ширина плиты, bn=1,1 м.


Проектирование сборного перекрытия

Проектирование сборного перекрытия


Изгибающие моменты в плите от нормативных нагрузок:

от постоянной


Проектирование сборного перекрытия


от временной


Проектирование сборного перекрытия


от полной


Проектирование сборного перекрытия


Усилие предварительного обжатия с учетом всех потерь


Проектирование сборного перекрытия


Расстояние от центра тяжести сечения до верхней ядровой точки

Проектирование сборного перекрытия


Упругопластический момент сопротивления сечения относительно растянутой грани


Проектирование сборного перекрытия


Изгибающий момент, воспринимаемый сечением при образовании трещин,


Проектирование сборного перекрытия


где Rbt,ser - расчетное сопротивление бетона растяжению для второй группы предельных состояний, определяемое по таблице 3.3[6], Rbt,ser=1.4МПа.


Проектирование сборного перекрытия

M < Mcrc

51,59 > 33,26кН*м,


следовательно, трещины не образуются.


2.3.6 Определение прогибов плиты

Предельные прогибы плит перекрытий при l0 < 5,7, [flim] = l0/200 = 5360/200 = 26,8 мм.

При отсутствии трещин в растянутой зоне кривизна плиты от действия постоянных нагрузок:

Проектирование сборного перекрытия


Кривизна, обусловленная выгибом от кратковременного действия усилия предварительного обжатия:


Проектирование сборного перекрытия


кривизна, обусловленная выгибом вследствие усадки и ползучести бетона от усилия предварительного обжатия:


Проектирование сборного перекрытия ,

Проектирование сборного перекрытия; Проектирование сборного перекрытия;

Проектирование сборного перекрытия, Проектирование сборного перекрытия

Проектирование сборного перекрытия Проектирование сборного перекрытия

Проектирование сборного перекрытия


Полная кривизна плиты


Проектирование сборного перекрытия


Определяем прогиб плиты

Проектирование сборного перекрытия

Проектирование сборного перекрытия


-следовательно, необходимо уменьшить величину преднапряжения.


2.4 Конструирование плиты


Геометрические параметры запроектированной плиты см. рис. 3. В качестве продольной рабочей арматуры устанавливаем 4 стержня Ж 10 мм из арматуры класса А800(см. п.2.3.1). Поперечную арматуру устанавливаем по конструктивных требованиям, 4 каркаса Ж3 В-500 с шагом S = 100 мм.

Для предотвращения образования трещин на верхней поверхности плиты от усилия предварительного обжатия на концевых участках каркасов в зоне действия максимальных поперечных сил устанавливаем дополнительные стержни Ж 10 мм класса А400 на длине 400 мм.

По всей верхней поверхности плиты конструктивно укладывается горизонтальная арматурная сетка для «распределения» местных нагрузок, а также восприятия напряжений от усадки бетона, усилий при изготовлении, транспортировке и монтаже, предварительного обжатия, случайных механических воздействий и др. Площадь ее поперечного сечения назначаем, исходя из минимального процента армирования, равного 0,05%.


Проектирование сборного перекрытия


Шаг продольных и поперечных стержней в сетке принимаем равным 200 мм. Тогда количество продольных стержней, Проектирование сборного перекрытиястержней.

Требуемая площадь поперечного сечения арматуры


Проектирование сборного перекрытия


По сортаменту (таблица 3.13[6]) подбираем Ж 3 мм.

У концов плиты ниже напрягаемой арматуры устанавливаем горизонтальные корытообразные сетки для предотвращения трещин вдоль напрягаемых стержней в зоне анкеровки и их продергивания. Длина каждой сетки 400 мм, диаметр стержней сеток - 4 мм, шаг - 100 мм, защитный слой - 10 мм.

У нижней грани плиты в середине пролета предусматривается такая же, но плоская горизонтальная распределительная сетка длиной 500 мм и с шагом стержней 200 мм.

В плите предусматриваем установку четырех монтажных петель, заглубленных в бетон. Петли устанавливаем над пустотами. Для возможности строповки в пустотах у петель предусматриваем отверстия. Диаметр петель принимаем 12 мм из арматуры класса А240.

Для обеспечения сопротивления смятию плиты на опорах от вертикальной нагрузки вышележащих стен и опорного давления, предотвращения распространения огня при пожаре, а также ликвидации «мостика холода» у наружных стен концевые участки пустот на длине 15 см заделываем с одного конца бетонными пробками, с другого - предусматриваем сужение пустот.


Проектирование сборного перекрытия

Проектирование сборного перекрытия

Проектирование сборного перекрытия

Рис.6.Армирование многопустотной плиты

3. Расчет и конструирование ригеля перекрытия


В курсовой работе необходимо запроектировать ригель с полужесткими стыками на опорах. Такие ригели наиболее широко применяются в каркасных зданиях. Особенностями полужестких стыков, определяющими их расчет, являются постоянные изгибающие моменты на опорах ригеля. В ригелях каркасов по серии 1.020-1 для жилых и общественных зданий величина опорного момента всегда равна 55 кН*м. Это обеспечивается за счет использования во всех стыках одинаковых калиброванных закладных деталей - «рыбок» (рис. 7).


Проектирование сборного перекрытия

Проектирование сборного перекрытия

Рис.7.Конструкция стыка ригеля с колонной

«Рыбки» (M1) приваривают к закладным деталям колонн и ригелей. Для возможности последующего обетонирования в целях защиты стальных деталей от коррозии в верхней части ригелей устраивают углубления.

Для опирания ригелей консоли на колоннах выполняют скрытыми в подрезках ригелей, что обусловлено эстетическими требованиями. Подрезки у опор ригелей снижают высоту их поперечного сечения, а следовательно, и прочность наклонных сечений в зонах действия максимальных поперечных сил.

Для обеспечения достаточной прочности наклонных сечений ригелей в местах подрезок часть нижней продольной арматуры отгибают под углом 45° и анкеруют сварным соединением с опорной закладной деталью.

Расчет ригеля начинаем с определения нагрузки на погонный метр


Проектирование сборного перекрытия


где q - полная расчетная нагрузка на 1 м2 плиты (п. 2.2), q = 9,04 кН/м;

В - шаг ригелей (колонн), B = 5.7 м;

А - площадь поперечного сечения ригеля, A = 0.156 м2 (рис. 1);

g - объемный вес железобетона, g=2500 кг/м3 (g=25 кН/м3);

gf - коэффициент надежности по нагрузке, gf = 1.1.


Проектирование сборного перекрытия


Расчетный пролет ригеля


Проектирование сборного перекрытия


где l - пролет ригеля, l = 5,7 м;

bk - ширина сечения колонны, принимаем bk = 30 см. Максимальные расчетные усилия в ригеле:

в пролете


Проектирование сборного перекрытия;


на опорах


Проектирование сборного перекрытия


Затем выполняем конструктивные расчеты.

Принимаем класс бетона по прочности на сжатие В25, класс арматуры: продольной рабочей и отгибов - А400, поперечной - А240.

Подберем продольную арматуру.

По таблице 3.4 [6] определяем расчетное сопротивление бетона осевому сжатию, Rb = 14,55 МПа. По таблице 5.8[5] находим расчетное сопротивление продольной арматуры осевому растяжению, Rs = 375 МПа, по таблице 3.10[6] модуль деформации стали Es = 20 МПа.

Находим рабочую высоту сечения Проектирование сборного перекрытия, где a – защитный слой бетона, а = 3 см


Проектирование сборного перекрытия


Определяем


Проектирование сборного перекрытия

По таблице 3.11 [6] определяем x = 0,28, h = 0,86

Определяем ω0 = 0,85-0,008*Rb = 0,85-0,008*14,5 = 0,734

Вычисляем граничную относительную высоту сжатой зоны бетона


Проектирование сборного перекрытия


Проверяем условие x≤xR,

0,28 < 1,32, т.к. условие выполняется, то сжатая арматура по расчету не требуется.

Вычисляем требуемую площадь продольной рабочей арматуры


Проектирование сборного перекрытия


Подбираем по сортаменту (таблица 3.13 [6]) 4 стержня диаметром 18 мм из арматуры класса А400, Аs= 10,18см2.

Проверяем процент армирования


Проектирование сборного перекрытия


Подберем поперечную арматуру.

При расчете прочности наклонных сечений учитываем, что часть поперечной силы воспринимается отгибами

где Ainc – площадь поперечного сечения отгибов,


Проектирование сборного перекрытия

Rs - расчетное сопротивление отгибов Rs = 355 МПа;

a - угол наклона отгибов (a = 45°), sina = 0,707.


Проектирование сборного перекрытия


Поперечная сила, которая должна быть воспринята бетоном сжатой зоны и поперечной арматурой (хомутами):


Проектирование сборного перекрытия


Конструктивно устанавливаем 2 каркаса Ж 6А240. Шаг поперечных стержней назначаем, исходя из конструктивных требований: S Ј 0.5*h1 и S Ј 300 мм, S = 0.5*300 =150 мм. Окончательно принимаем S = 150 мм.

Расчет калиброванной закладной детали

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: