Xreferat.com » Рефераты по строительству » Одноэтажное промышленное здание

Одноэтажное промышленное здание

Пояснительная записка

к курсовому проекту:

«Одноэтажное промышленное здание»

1.1 Компоновка поперечной рамы и определение нагрузок


Компоновку поперечной рамы производим в соответствии с требованиями типизации конструктивных схем одноэтажных промышленных зданий. Находим высоту надкрановой части колонн, принимая высоту подкрановой балки 0,8 м (по приложению XII) для шага колонн 6 м., а кранового пути 0,15 м с учетом минимального габарита приближения крана к стропильной конструкции 0,1 м и высоты моста крана грузоподъемностью 32/5 т Hk – 2,75 м (по приложению XV):

Высоту подкрановой части колонн определяем но заданной высоте до низа стропильной конструкции 12 м и отметки обреза фундамента – 0,150 м.:


Н2 = 2,75 + 0,8 + 0,15 + 0,1 = 3,8 м => принимаем Н2 = 3,9 м

Н1 = 12 - 3,9 + 0,15 = 8,25 м.


Расстояние от верха колонны до уровня головки подкранового рельса соответственно будет равно:


у = 3,9 - 0,8 - 0,15 = 2,95 м.


Для назначения размеров сечений колонн по условию предельной гибкости вычислим их расчетные длины в соответствии с требованиями табл. 32 [2]. Результаты представлены в табл. 1.


Таблица 1. Расчетные длины колонн (l0)

Часть

колонны

При расчёте в плоскости поперечной рамы

В перпендикулярном

направлении


При учёте нагрузок от крана Без учёта нагрузок от крана

Подкрановая

Н1 = 8,25 м.

1,5∙Н1=1,5∙8,25=12,375 м

1,2∙(Н12) = 14,58 м.

0,8∙Н1 = 6,6 м.

Над крановая

Н2 = 3,9 м.

2∙Н2=2∙3,9=7,8м

2,5∙Н2 = 9,75 м.

1,5∙Н2 = 5,85 м.


Согласно требованиям п. 5.3 [2], размеры сечений внецентренно сжатых колонн должны приниматься такими, чтобы их гибкость l0/r (l0/h) в любом направлении, как правило, не превышала 120 (35). Следовательно, по условию максимальной гибкости высота сечения подкрановой части колонн должна быть не менее 14,58/35 = 0,417 м, а над крановой – 9,75/35 = 0,279 м. С учетом требований унификации для мостовых кранов грузоподъемностью более 30 т принимаем поперечные сечения колонн в над крановой части 400Ч600 мм. В подкрановой части для крайних колонн назначаем сечение 400Ч800 мм, и для средней – 400Ч600 мм. В этом случае удовлетворяются требования по гибкости и рекомендации по назначению высоты сечения подкрановой части колонны в пределах:


(1/10...1/14)Н1 = (1/10...1/14)8,25 = 0,825...0,589 м.


В соответствии с таблицей габаритов колонн (приложение V) и назначенными размерами поперечных сечений принимаем для колонн крайнего ряда по оси А номер типа опалубки 5, а для колонн среднего ряда по оси Б – 9.

Стропильную конструкцию по заданию принимаем в виде сегментной раскосной фермы типа ФС-18 из тяжелого бетона. По приложению VI назначаем марку конструкции 2ФС-18, с номером типа опалубочной формы 2, с максимальной высотой в середине пролета равной; hферм = 2.45 + 0.18/2 +0.2/2 = 2.64 м., и объемом бетона 2,42 м3.

По приложению XI назначаем тип плит покрытия размером 3Ч6 м (номер типа опалубочной формы 1 высота ребра 300 мм, приведенная толщина с учетом заливки швов бетоном 65,5 мм).

Толщина кровли (по заданию тип 5), согласно приложению XIII, составляет 140 мм. По заданию проектируем наружные стены из сборных навесных панелей. В соответствии с приложением XIV принимаем панели из ячеистого бетона марки по плотности D800 толщиной 200 мм. Размеры остекления назначаем по приложению XIV с учетом грузоподъемности мостовых кранов.

Результаты компоновки поперечной рамы здания представлены на рис. 1.

Рис.1. Фрагмент плана одноэтажного трехпролётного промышленного здания и поперечный разрез.


Определяем постоянные и временные нагрузки на поперечную раму: постоянные нагрузки, распределенные по поверхности от веса конструкции покрытия заданного типа (рис. 2) приведены в табл. 2.

Таблица 2. Постоянные нагрузки на 1 мІ покрытия:

Элемент совмещённого покрытия

Нормативная нагрузка

[кН/м2]

Коэффициент γс

Расчётная нагрузка

[кН/м2]

Кровля:


Слой гравия, втопленного в битум

0,16 1,3 0,208
Трехслойный рубероидный ковёр 0,09 1,3 0,117

Цементная стяжка (δ = 25 мм)

0,27 1,3 0,351
Ячеистый бетон 0,03 1,3 0,39

Пароизоляция (рубероид 1 слой, 0,03 мм.)

0,03 1,3

0,039

Ребристые плиты покрытия размером 3х6 м с учётом заливки швов (δ = 65,5 мм, ρ = 25 кН/мі)

1,75

1,1

1,925

ФС-18 (Vб=2,42 м3, пролёт 18 м, шаг колонн 6 м, бетон тяжелый)

0,6534

1,1 0,7187

Итого



3,748

С учетом коэффициента надежности по назначению здания γn = 1 (класс ответственности I) и шага колонн в продольном направлении 6 м, расчетная постоянная нагрузка на 1 м ригеля рамы будет равна:


G = 3,748·1·6=22,4922 кН/м.


Нормативная нагрузка от 1 м2 стеновых панелей из бетона на пористом заполнителе марки D 800 при толщине 200 мм составит 8,8·0,2 = 1,76 кН/м2, где ρ= 8,8 кН/м3 – плотность бетона на пористом заполнителе, определяемая согласно п. 2.13 [3].

Нормативная нагрузка от 1 м2 остекления в соответствии с приложением XIV равна 0,5 кН/м2.

Расчетные нагрузки от стен и остекления оконных переплетов производственного здания:

на участке между отметками 11,4 и 13,8 м G1 = 27,8784 кН;

на участке между отметками 7,8 и 11,4м G2 = 21,5892 кН

на участке между отметками 0,0 и 7,8 м G3 = 35,7192 кН;

Расчетные нагрузки от собственного веса колонн из тяжелого бетона (ρ = 25 кН/м3):

Колонна по оси А, подкрановая часть с консолью:


G41 = (0,8·8,25+0,5·0,6+0,52/ 2)·0,4·25·1,1·1 = 77,275 кН;


Над крановая часть:


G42 = 0,4·0,6·3,9·25·1,1·1 = 25,74кН;


итого


G4 = G41+G42 = 103,015 кН.


Колонна по оси Б, подкрановая часть с консолями:


G51 = (0,8·8,25+2·0,6·0,65+0,652)·0,4·25·1,1·1 = 94,9025 кН;


над крановая часть:


G52 = 0,6·0,4·3,9·25·1,1·1= 25,74 кН;


итого


G5= G51+G52 = 120,6425 кН.


Расчетная нагрузка от собственного веса подкрановых балок (по приложению XII) и кранового пути (1,5 кН/м) будет равна: G6 =(35+1,5·6) ·1,1·1 = 48,4 кН

Временные нагрузки: снеговая нагрузка для расчета поперечной рамы принимается равномерно распределенной во всех пролетах здания. Для заданного района строительства

(г. Братск) по [7] определяем нормативное значение снегового покрова so = 1 кПа (район III) и соответственное полное нормативное значение снеговой нагрузки s = so·μ = 1·1 = 1,0 кПа (при определении коэффициента μ не следует учитывать возможность снижения снеговой нагрузки с учетом скорости ветра). Коэффициент надежности для снеговой нагрузки γf = 1,4. Тогда расчетная нагрузка от снега на 1 м ригеля рамы с учетом класса ответственности здания соответственно будет равна Psn = 1·1,4·6·1= 8,4 кН/м. Длительно действующая часть снеговой нагрузки согласно п. 1.7 [7] составит Psn,l = Psn·k= 0,3·8,4 = 2,52 кН/м.

Крановые нагрузки: по приложению XV находим габариты и нагрузки от мостовых кранов грузоподъемностью Q = 32 т : ширина крана Вк = 6,3 м; база крана Ак = 5,1 м; нормативное максимальное давление колеса крана на подкрановый рельс Рмaх,п = 235 кН; масса тележки GT = 8,7 т; общая масса крана Gк = 28,0 т;

Нормативное минимальное давление одного колеса крана на подкрановый рельс (при 4 колесах):


Рмin,п= 0,5(Q + Qк) – Рмaх,п= 0,5(313,9 + 28·9,81) – 235 = 59,3 кН.


Нормативная горизонтальная нагрузка на одно колесо крана, направленная поперек кранового пути и вызываемая торможением тележки, при гибком подвесе груза будет равна:


Тп= 0,5·0,05(Q + Qт) = 0,5·0,05(313,9 + 8,7·9,81) = 9,98 кН.


Расчетные крановые нагрузки вычисляем с учетом коэффициента надежности по нагрузке yf = 1,1 согласно п. 4.8 [7].

Определим расчетные нагрузки от двух сближенных кранов по линии влияния (рис.3) без учета коэффициента сочетания Ψ:

Рис. 3 Линия влияния давления на колонну и установка крановой нагрузки в не выгодное положение.


максимальное давление на колонну


Dмaх= Рмaх,п·γf ·Σу·γn = 235·1,1·1,95·1=504,075 кН, где Σу


сумма ординат линии влияния,


Σу = 1+0,8+0,15 = 1,95;


минимальное давление на колонну


Dmin = Рmin,п·γf ·Σу·γn = 59,3·1,1·1,95·1=127,1985 кН.


тормозная поперечная нагрузка на колонку


Т= Тп·γf ·Σу·γn = 9,98·1,1·1,95·1 = 21,4071 кН.


Ветровая нагрузка: Пенза расположена в II ветровом районе по скоростным напорам ветра. Согласно п. 6.4 [7] нормативное значение ветрового давления равно w0=0,3 кПа. Для заданного типа местности В с учетом коэффициента k (см. табл 6 [7]) получим следующие значения ветрового давления по высоте здания:

на высоте до 5 м wn1= 0,5·0,3 = 0,15 кПа;

на высоте 10 м wn2= 0,65·0,3 = 0,195 кПа;

на высоте 20 м wn3= 0,85·0,3 = 0,255 кПа.

Согласно рис. 4, вычислим значения нормативного давления на отметках верха колонн и покрытия:

на отметке 13,2м wn4=0,195+[(0,255–0,195)/(20–10)](12–10)=0,207 кПа;

на отметке 15,3м wn5 = 0,195 + [(0,255 – 0,195)/(20 – 10)](15,08 – 10) = 0,225 кПа. Переменный по высоте скоростной напор ветра заменяем равномерно распределенным, эквивалентным по моменту в заделке консольной балки длиной 6 м:


кПа


Рис. 4 К определению эквивалентного нормативного значения ветрового давления.

Для определения ветрового давления с учетом габаритов здания находим по прил. 4 [7] аэродинамические коэффициенты се = 0,8 и се3 = – 0,4; тогда с учетом коэффициента надежности по нагрузке, γf = 1,4 и шага колонн 6 м получим:

расчетную равномерно распределенную нагрузку на колонну рамы с наветренной стороны w1 = 0,177·0,8·1,4·6·1= 1,18944 кН/м;

то же, с подветренной стороны w2 = 0,177·0,4·1,4·6·6 = 0,5947 кН/м;

расчетная сосредоточенная ветровая нагрузка от давления ветра на ограждающие конструкции выше отметки 12 м.:


·γf··L·γn=

= (0,207+0,225)/2(15,8 – 12)·(0,8+0,4)·1,4·6·1 = 6,706 кН.


Расчетная схема поперечной рамы с указанием мест приложения всех нагрузок приведена на рис.5. При определении эксцентриситета опорных давлений стропильных конструкций следует принимать расстояния сил до разбивочных осей колонн в соответствии с их расчетными пролетами по приложениям VI – X.


Рис. 5 Расчетная схема поперечной рамы.

Проектирование стропильной конструкции.


Сегментная раскосная ферма:

Решение. Воспользуемся результатами автоматизированного статического расчета безраскосной фермы марки 2ФС24 для III снегового района.

Для анализа напряженного состояния элементов фермы построим эпюры усилий N, М и Q от суммарного действия постоянной и снеговой нагрузок.

Нормативные и расчетные характеристики тяжелого бетона заданного класса В35, твердеющего в условиях тепловой обработки при атмосферном давлении, эксплуатируемого в окружающей среде влажностью 80% (уb2 = 1);


Rbn= Rb,ser = 25,5 МПа; Rb= 1·19,5= 19,5 МПа;

Rbt,n= Rbt,ser = 1,3 МПа; Еь = 31000 МПа;

Rbp = 20 МПа (см. табл. 2.3).


Расчетные характеристики ненапрягаемой арматуры: продольной класса A-III, Rs = Rsc = 365 МПа; Es = 200 000 МПа; поперечной класса А-I, Rsw = 175 МПа; Es = 210 000 Мпа.

Нормативные и расчетные характеристики напрягаемой арматуры класса A-V:


Rsn = Rs,ser = 785 МПа; Rs = 680 МПа; Es = 190 000 МПа.


Назначаем величину предварительного напряжения арматуры в нижнем поясе фермы Sp= 700 МПа. Способ натяжения арматуры – механический на упоры.

Так как σsp+р = 700+35=735МПа<Rs,ser =785 МПа и σsp – р = 700–35=665>0,3·Rs,ser=235,5 МПа, то требования условия (1) [2] удовлетворяются.

Расчет элементов нижнего пояса фермы. Согласно эпюрам усилий N и М, наиболее неблагоприятное сочетание усилий имеем в сечении номер 10 при N= 480,44 кН и М = 1,78 кН·м.

Поскольку в предельном состоянии влияние изгибающего момента будет погашено неупругими деформациями арматуры, то расчет прочности выполняем для случая центрального растяжения.

Площадь сечения растянутой арматуры определяем по формуле (137) [4], принимая η=1,15: As,tot= N/(η·Rs) = 480,44·103/1,15·680= 614,974 мм2.

Принимаем 4 ш 16 A-V(Asp= Aspў=804 мм2).

Определим усилия для расчета трещиностойкости нижнего пояса фермы путем деления значений усилий от расчетных нагрузок на вычисленный ЭВМ средний коэффициент надежности по нагрузке γfm= 1,206. Для сечения 10 получим усилия от действия полной (постоянной и снеговой) нагрузки:


N= NЇ/ γfm = 480,44/1,206 = 398,3748 кН;

М= MЇ/ γfm = 1,78/1,206 = 1,476 кН·м;


то же, от длительной (постоянной) нагрузки:


Nl = [Ng + (NЇ – Ng)kl] / γfm= [346,35+(480,44–346,35)0,3] /1,206 = 320,5448 кН;

Мl =[Мg + (М Ї– Мg)kl] / γfm= 1,8574 кН·м.


Согласно табл. 1, б [4] нижний пояс фермы должен удовлетворять 3-й категории требований по трещиностойкости, т. е. допускается непродолжительное раскрытие трещин до 0,3 мм и продолжительное шириной до 0,2 мм.

Геометрические характеристики приведенного сечения вычисляем по формулам (11)–(13) [4] и (168)—(175) [5].

Площадь приведенного сечения:


Ared=A+α·Asp,tot= 250·200+6,129·804 = 54927 мм2


где α = Es/Eb = 190 000/31 000 = 6,129


Момент инерции приведенного сечения


Ired=I+∑α·Asp·y2sp= 250·2003/12+6,129·402·552+6,129·402·552=1,8157·108 мм4

где уsp = h/2 — ар = 250/2 – 60 = 55мм.


Момент сопротивления приведенного сечения:


Wred = Ired/y0 = 1,8157·108/100 =1,8157 · 106 мм3, где у0 = h/2 = 250/2 = 125 мм.

Упругопластический момент сопротивления сечения:


Wpl = γ·Wred = 1,75·1,8175·106 = 3,1775 ·106 мм3, где v = 1,75


принят по табл. 38 [5].

Определим первые потери предварительного напряжения арматуры по поз. 1– 6 табл. 5 [2] для механического способа натяжения арматуры на упоры.

Потери от релаксации напряжений в арматуре σ1 = 0,1·σsр–20 = 0,1·700–20 = 50 МПа,

Потери от температурного перепада σ2 = 1,25·Δt = 1,25·65 =81,25 МПа.

Потери от деформации анкеров, расположенных у натяжных устройств

σ3 = (Δℓ/ℓ)Es= =(3,65/19 000)190 000 = 36,5 МПа, где Δℓ = 1,25 + 0,15d = 1,25 + 0,15-16 = 3,65 мм и ℓ = 18 + 1 = 19 м = 19 000 мм.


Потери σ4 – σ6 равны нулю.

Напряжения в арматуре с учетом потерь по поз. 1 – 6 и соответственно усилие обжатия будут равны:


σsр1 = σsр – σ1 – σ2 – σ3 = 700–50–81,25–36,5 = 532,25 МПа;

P1 = σsр1·Аsр,tot= 532,25·804= 427,929 • 103 Н = 427,929 кН.


Определим потери от быстро натекающей ползучести бетона:


σbp=PI/Ared= 427,929·103/54927 = 7,7909 МПа;

α= 0,25+0,025·R = 0,25 + 0,025·20 = 0,75<0,8,


принимаем α=0,75;

поскольку


σbp /Rbp= 7.7909/20 = 0,389<α, то σ6 = 0,85·40· σbp /Rbp = 0,85·40·0.389 = 13.244 МПа.


Таким образом, первые потери и соответствующие напряжения в напрягаемой арматуре будут, равны;


σlosl = σ1+ σ2 + σ3+ σ6 = 180.9945 МПа; σspl = σsp - σlosl = 700–180.9945 = 519.0055 МПа.


Усилие обжатия с учетом первых потерь и соответствующие напряжения в бетоне составят:

Рl = σsр1·Аsр,tot = 519.0055·804=417.28·103Н = 417.28 кН; σbp=PI/Ared= 417,28·103/54927 = 7,597 МПа.


Поскольку


σbp /Rbp= 7,597/20=0,3798<0,95,


то требования табл. 7 [2] удовлетворяются.

Определим вторые потери предварительного напряжения арматуры по поз. 8 и 9 табл. 5 [2].

Потери от усадки бетона σ8 = 35 МПа.

Потери от ползучести бетона при σbp /Rbp= 0,318< 0,75 будут равны:


σ9 = 150 • 0,85· σbp /Rbp= 150·0,85·0,3798 = 48,4308 МПа.


Таким образом, вторые потери составят


σlos2 = σ8+ σ9 = 35+48,4308=83,4308 МПа,


а полные будут равны:

σlos = σlos1+ σlos2 = 180,9945+83,4308=264,4253 МПа>100 МПа.


Вычислим напряжения в напрягаемой арматуре с учетом полных потерь и соответствующее усилие обжатия:


σsp2 = σsp – σlos = 700–264,4253=435,5747 МПа;

Р2 = σsр2·Аsр,tot = 435,5747·804=350,202·103Н = 350,202 кН.


Проверку образования трещин выполняем по формулам п. 4.5 [2] для выяснения необходимости расчета по ширине раскрытия трещин.

Определим расстояние r от центра тяжести приведенного сечения до ядровой точки, наиболее удаленной от максимально растянутой внешней нагрузкой грани сечения. Поскольку N=398,3748 кН > Р2 = 350,202 кН, то величину г вычисляем по формуле:


r = Wpl /[A + 2 α ·(Asp + A'sp)] = 3,1775·106/[250·200+2·6,129·(804)] = 53,0862 мм


Тогда Мrp2ор2+г) = 350,202·103·(0+53,0862) = 18,5909·106 Н·мм = 18,5909 кН·м; соответственно Мcrc = RbtserWpl + Мrp = 1,95·3,1775·106 + 18,5909·106 =59,2823·106Н·мм =59,2823 кН·м.

Момент внешней продольной силы Mr = N(ео + г) = 22,6242 кН·м,

Поскольку Мcrc = 59,2823 кН·м >Mr = 22,6242 кН·м, то трещины не образуются и расчет по раскрытию трещин не требуется.

Расчет элементов верхнего пояса фермы. В соответствии с эпюрами усилий N и М,

наиболее опасным в верхнем поясе фермы будет сечение 2 с максимальным значением продольной силы. Для сечения 2 имеем усилия от расчетных нагрузок:


N = 492,69 кН; М =2,53 кН·м; NL = 355,18 кН; МL = 1,82 кН·м.


Расчетная длина в плоскости фермы, согласно табл. 33 [2], при эксцентриситете


е0= M/N = 3,7050 мм < h/8 = 22,5 мм будет равна ℓ0= 0,9·ℓ= 0,9·3,224 = 2,9016 м.


Находим случайный эксцентриситет еа>h/30 = 180/30 = 6 мм; еа ≥ 10 мм; принимаем еа = 10 мм.

Так как ℓ0 = 2,9016< 20h = 3.6, то расчет прочности ведем как для сжатого элемента.

Тогда требуемая площадь сечения симметричной арматуры будет равна:



Принимаем конструктивно 4Ш10 A-III, (As=A's=314мм2).

При этом μ =(As+A's)/(b·h)=2·226/(300·300)=0,5 > 0,2% (при ℓ0/h > 10).

Попречную арматуру конструируем в соответствии с требованиями п.5.22[2] из арматуры класса Вр-I диаметром 4 мм, устанавливаемую с шагом s=200 мм, что не менее 20d=20·12=240 мм и не более 500 мм.

Расчет элементов решетки фермы. К элементам решетки относятся стойки и раскосы фермы, имеющие все одинаковые размеры поперечного сечения b=150 мм, h=120 мм для фермы марки 2ФС18.

Максимальные усилия для подбора арматуры в элементах решетки определяются из таблицы результатов статического расчета фермы с учетом четырех возможных схем нагружения снеговой нагрузкой.

Раскос 13-14, подвергающийся растяжению с максимальным усилием N=39,2 кН. Продольная ненапрягаемая арматура класса А-III, Rs=Rsc=365 Мпа. Требуемая площадь сечения рабочей арматуры по условию прочности составит Аs= N/Rs=39,2·103/365=107,3972кН. Принимаем 4 Ш 8 А-III (Аs=201 мм2).

Аналогично конструктивно армируем остальные сжатые элементы решетки, т.к. усилия в них меньше, чем в раскосе 13-14.

Стойка 11-12, подвергающийся растяжению с максимальным усилием N=-15,35 кН, Nl=-8.7 кН. Расчетная длинна l0=0,8·h=1,76·2,2=1,76 м.Так как l0/h=1,76/0,12=14,6667<20, то прогибов не образуется и η=1.

Принимаем симметричное армирование 4 Ш 10 А-III (Аs=314 мм2).

Расчет и конструирование опорного узла фермы.

Расчет выполняем в соответствии с рекомендациями [10]. Усилие в нижнем поясе в крайней панели N = 438,16 кН, а опорная реакция Q = Q мах = 225,73кН.

Необходимую длину зоны передачи напряжений для продольной рабочей Ш 16 мм класса А–III находим по требованиям п. 2.29 [2]:


lp = (ωp·σsp·Rbtp)d = (0,25·700/20 + 10)16 = 300 мм, где σsp = 700 МПа


(большее из значений Rs и σsp), a ωр =0,25 и λр = 10 (см. табл. 28 [2]).

Выполняем расчет на заанкеривание продольной арматуры при разрушении по возможному наклонному сечению ABC, состоящему из участка АВ c наклоном под углом 45° к горизонтали и участка ВС с наклоном под углом 27,6 ° к горизонтали (см. приложение VIII).

Координаты точки В будут равны: у = 105 мм, х = 300 + 105 = 405 мм.

Ряды напрягаемой арматуры, считая снизу, пересекают линию ABC при у, равном: для 1-го ряда – 60 мм, 1Х = 300 + 40 = 345 мм; для 2-го ряда — 300 мм (пересечение с линией ВС), 1Х = 455 мм. Соответственно значения коэффициента γsp = lx/lp (см. табл. 24 [2]) для рядов напрягаемой арматуры составят:

для 1-го ряда — 345/300 = 1,15; для 2-го ряда — 455/300 = 1,5167.

Усилие, воспринимаемое напрягаемой арматурой в сечении ABC:


Nsp = Rs·∑γspi·Aspi = 680(1,15 · 402 + 1,5167 · 402) = 728,9691·103H = 728,9691 кН.


Из формулы (1) [10] находим усилие, которое должно быть воспринято ненапрягаемой арматурой при вертикальных поперечных стержнях:

Ns=N–Nsp=438,16–728,9691= –290,8091 кН.

Требуемое количество продольной ненапрягаемой арматуры заданного класса принимаем конструктивно 4 Ш 10 A-III, As = 314 мм2 (Rs = 365 МПа), что более Аsmin=0,15·N/Rs= 0,15·438,16·103/365 = 180,0657 мм2.

Напрягаемую арматуру располагаем в два ряда по высоте: 1-й ряд – у = 85 мм, пересечение с линией АВ при х = 385 мм, lх = 385 — 20 = 365 мм; 2-й ряд – у = 115 мм, пересечение с линией ВС, при х = 429 мм, 1x= 409 мм.

В соответствии с п. 5.14 [2] определяем требуемую длину анке-ровки ненапрягаемой продольной арматуры в сжатом от опорной реакции бетоне. По табл. 37 [2] находим: ωаn = 0,5; ∆λan = 8; λan = 12 и lan,min=200мм.

По формуле (186) [2] получим:


lan = (ωan·Rs/Rb+∆λan)·d=(0,5-365/19,5+8)10=173,5897мм >λan·d = 12·10 = 120 мм


и > lan,min=200 мм. Принимаем lan= 200 мм. Тогда значение коэффициента условий работы ненапрягаемой арматуры γs5 = lx/ly при lx > lan будет равно γs5 =1.

Следовательно, усилие, воспринимаемое ненапрягаемой продольной арматурой, составит. Ns=Rs·∑γs5i·Aspi =365(1·157+1·157)=114,61·103Н=114,61 кН, т. е. принятое количество ненапрягаемой арматуры достаточно для выполнения условия прочности на заанкеривание.

Из условия прочности на действие изгибающего момента в сечении АВ, поперечная арматура не требуется и устанавливается конструктивно.

Принимаем вертикальные хомуты минимального диаметра 6 мм класса A-I с рекомендуемым шагом s = 100 мм.

Определяем минимальное количество продольной арматуры у верхней грани опорного узла в соответствии с п. 6.2 [10]: As = 0,0005A=0,0005-250-780= 97,5мм2. Принимаем 2 Ш 10 A-III, As= 157мм2.

1.3 Оптимизация стропильной конструкции


Методические указания. Программная система АОС-ЖБК [11] позволяет выполнить оптимизацию проектируемой стропильной конструкции по критерию относительной стоимости стали и бетона, при этом за единицу автоматически принимается относительная стоимость рассчитанного студентом варианта по индивидуальному заданию.

Варьируемыми параметрами могут быть: тип стропильной конструкции и соответствующие типы опалубочных форм, классы бетона, классы ненапрягаемой и напрягаемой арматуры.


1.4 Проектирование колонны:


Таблица 3. Определение основных сочетаний расчетных усилий в сечении 3-3 колонны по оси Б.


Загружения и усилия

Расчетное сочетание усилий (силы – в кН; моменты – в кН/м)



N Mmax

N Mmin

Nmax Mmax (Mmin)

Nmin Mmax (Mmin)


загруженния

1+(10+18)*0,85

1+(6+12)*0,7+14*0,85

1+2+(6+12)*0,7+

+14*0,85

1+(6+12)*0,7+14*0,85

1

У

С

И

Л

И

Я

N

248,89 248,89 324,49 248,89


M

47,0835 -97,289 -90,059 -90,059


N1

248,89 248,89 324,49 324,49


M1

11,29

11,29

18,52 18,52


Nsh

0 0 0 0


Msh

35,7935 -108,58 -108,58 -108,58

загруженния

1+(2+(10+18)*0,85+22)*1

1+((6+14)*0,85+23)*0,9

1+(2+(6+14)*0,85+23)*0,9

1+((6+14)*0,85+23)*0,9

2

У

С

И

Л

И

Я


N

316,93 248,89 316,93 248,89


M

52,4951 -94,09 -87,58 -94,09


N1

248,89 248,89 248,89 248,89


M1

11,29 11,29 11,29

11,29



Nsh

68,04 0 68,04 0


Msh

41,2051

-105,38

-98,87

-105,38


Размеры сечения надкрановой части колонны b=400 мм, h=600 мм. Назначаем для продольной арматуры а=а'=40 мм, тогда h0=h–а=600–40=560 мм.

Определим сначала площадь сечения продольной арматуры со стороны менее растянутой грани (справа) при условии симметричного армирования от действия расчетных усилий в сочетании N и Мmin :


N = 248,89 кН, М = | Mmin | = 97,289 кН·м;

Nl= 248,89 кН, Мl = 11,29; Nsh = 0; Мsh = 108,58 кН·м.


Поскольку имеются нагрузки непродолжительного действия, то вычисляем коэффициент условий работы бетона γbl согласно п. 3.1 [3]. Для этого находим: момент от действия постоянных, длительных и кратковременных нагрузок (кроме нагрузок непродолжительного действия) относительно оси, проходящей через наиболее растянутый (или менее сжатый) стержень арматуры:


MI=(N – Nsh)(h0 - а')/2 + (М – Msh) = (248,89-0) (0,56-0,04) / 2+ (97,289-108,581)= 53,42 кНм;


то же, от всех нагрузок


MII=N(h0 –а')/2+М= 248,89(0,56–0,04) / 2 + 97,289 = 162,0004 кНм.


Тогда при γb2 =0,9 получим γbl = 0,9МПI = 0,9·162 /53,42= 2,73>1,1.

Принимаем уы = 1,1 и Rb = 1,1·19,5 = 21,45 МПа.

Расчетная длина подкрановой части колонны при учете нагрузок от кранов равна l0= 12,375 м (см. табл.1). Так как l0/h=12,375/0,6=6,5>4, то расчет производим с учетом прогиба элемента, вычисляя Ncr по формуле (93) [3]. Для этого находим е0 = M/N=97,28·106/(248,89·103) =390,89 мм > еа = h/30=600/30=20 мм; так как е0/h= 390,9/700=0,55 > δe,min=0,5–0,01·l0/h–0,01Rb=0,2205, принимаем δe =e0/h=0,55.

Поскольку изгибающие моменты от полной нагрузки и от постоянных и длительных нагрузок имеют разные знаки и е0=390,89 мм>0,1h=70 мм, то принимаем φl=1.

С учетом напряженного состояния сечения (малые эксцентриситеты при больших размерах сечения) возьмем для первого приближения коэффициент армирования μ=0,004, тогда при а=Еsb=190 000/32 500=5,85 получим:


Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: