Электроснабжение завода
Продолжение табл. 1.7.
Вар. | Наим. линии | Назначение линии | Доп. нагр. на 1 каб |
Сечении кааб. выбр. по усл. доп. нагрева, мм2 |
Сечение выбр. по мех. проч., мм2 |
Сеч. выбр. по потр. нагр., мм2 |
Эконом. целесообр. сечения, мм2 |
Марка и сечение окон. выбр. кабеля, мм2 |
|
в норм. р. I’доп, А |
в авар. р.1,3I’доп, А |
||||||||
вариант 1-5 | Л-1 | ТП3 РУ-1 | 113 | 146 | 25 | 95 | 25 | 50 | АСБ (3х95) |
Л-2 | РУ-1 ГПП | 234 | 304 | 120 | 95 | 120 | 185 | АСБ (3х185) | |
Л-3 | ТП-4 РУ-2 | 94,5 | 123 | 25 | 95 | 95 | 150 | АСБ (3х150) | |
Л-4 | РУ-2 ГПП | 480 | 625 | 2х150 | 95 | 2х150 | 2х185 | 2АСБ (3х185) | |
Л-5 | ТП-6 РУ-3 | 171 | 222 | 70 | 95 | 95 | 150 | АСБ (3х150) | |
Л-6 | РУ-3 ГПП | 490 | 642 | 2х150 | 95 | 2х150 | 2х185 | 2АСБ (3х185) | |
Л-7 | ТП-1 ТП-2 | 72 | 94 | 16 | 95 | 95 | 95 | АСБ (3х95) | |
Л-8 | ТП-2 ГПП | 234 | 304 | 120 | 95 | 120 | 185 | АСБ (3х185) | |
Л-9 | РУ-2 ТП-5 | 234 | 304 | 120 | 95 | 120 | 185 | АСБ (3х185) | |
Л-10 | ТП-5 ТП-8 | 140 | 181 | 50 | 95 | 95 | 150 | АСБ (3х185) | |
Л-11 | РУ-3 ТП-7 | 202 | 263 | 95 | 95 | 95 | 150 | АСБ (3х185) |
Технико-экономические показатели трансформаторов связи с энергосистемой
Капитальные затраты:
Стоимость двух трехобмоточных трансформаторов типа ТДТ-16000/110 при наружной установке:
тыс. руб.
стоимость двух вводов с разъединителями и короткозамыкателем, устанавливаемые в ОРУ-110 кВ на железобетонных конструкциях:
тыс. руб.
Суммарные капитальные затраты:
тыс. руб.
Полная расчётная мощность трансформатора на ГПП составляет 18640 кВА. Нагрузка на один трансформатор составляет 9320 кВА.
Считаем, что обмотка высшего U загружена на 100%, среднего – 60% и низшего – 40%, тогда коэффициент загрузки обмоток равен:
Потребление мощности охлажд. установки принимаем = 12 кВт.
Приведенные потери холостого хода:
Напряжения к.з. соотв. по обмоткам высшего, среднего и низшего напр.:
Приведенные потери к.з. определяются:
Приведенные потери мощности в одном трехобмоточном трансформаторе:
Потери мощности в двух трансформаторах ГПП:
На основании результатов расчётов, составляем итоговую таблицу технико-экономических показателей. Как наиболее рациональный принимается вариант системы электроснабжения с напряжением питающих и распределительных сетей 20 кВ.
Т.к. у нас имеются потребители электроэнергии 6 кВ, то предусматриваем дополнительные трансформаторные п/ст 20/6 кВ: ТП-3; ТП-4; ТП-6.
В соответствии с расчётами намечаем к установке на ТП-3 (цех № 14, 15) два трансформатора типа ТМ-20/6, мощностью 1600 кВА каждый, расчётная мощность ТП-3 – 1994 кВА:
ТП-4 (цех № 18); Рр=1920 кВт; Qр=1440 квар; Sр=2400 кВА. Намечаем к установке 2 трансформатора по 1600 кВА каждый с коэффициентом загрузки:
ТП-6; Рр=1575 кВт; Qр=1181 квар; Sр=1968 кВА. Намечаем к установке 2 трансформатора по 1600 кВА каждый с коэффициентом загрузки:
Таблица 1.8.
Наименование | Напряжение, кВ | Кап. затраты, к, тыс.руб. | Годовые эксп. расходы | Год.расч.затр., тыс.руб/год |
Потери эл.энергии Эа, т.кВт/год |
Выход цв.метал., Сцм | ||
Сп, т.руб/год | Са, т.руб/год | Сэ, т.руб/год | ||||||
Система внеш. электроснабжения |
20 35 110 |
40,8 80,2 84,9 |
24 14,8 1,84 |
3,5 2,6 3,5 |
27,5 17,4 5,4 |
32,6 27,4 16 |
1495 927 115 |
20,2 19 15,3 |
Тр-ры связи с энергосистемой |
35/6-10 110/6-20 |
65,9 145,9 |
27,2 33,0 |
4,4 9,2 |
31,6 42,2 |
40,4 61,0 |
1776 2060 |
5,6 13,5 |
Система внутр. электроснабжения |
6 10 20 |
171,2 184,5 236,3 |
28,4 28,5 28,9 |
9,95 10,9 13,8 |
38,35 39,5 40,7 |
65 65,5 72,4 |
1776 1958 1770 |
6,3 4,5 3,7 |
Система электроснабжения завода |
20/20 35/6 35/10 110/6 110/20/6 110/20/6 |
277,1 321,4 334,7 402,1 415,4 467,2 |
50,9 70,4 70,5 62,5 62,7 62,7 |
17,3 19,6 18 22,7 23,7 26,5 |
68,2 87,3 88,5 85,2 86,4 87,6 |
105,0 132,8 133,3 142 142,5 149 |
3265 4479 4661 3951 4133 3945 |
23,9 35,3 23,5 21,6 19,8 19 |
Выбр. система электроснабжения | 20/20 | 277,1 | 50,9 | 17,3 | 68,2 | 105 | 3265 | 23,9 |
Принимается, как наиболее рациональный, вариант системы электроснабжения 35 кВ и распределительных сетей 6 кВ.
Краткое описание принятой системы электроснабжения
Электроснабжение завода осуществляется от п/ст энергосистемы по двум воздушным линиям 35 кВ, выполненным проводом марки «АС» сечением 185 мм2 на железобетонных промежуточных и анкерных металлических опорах с тросом.
На ГПП открыто установлены 2 трехобмоточных трансформатора типа ТД-16000/35. На стороне 35 кВ принята упрощенная схема без выключателей с минимальным количеством аппаратуры (разъединители и короткозамыкатели) РУ-6 выполнено из шкафов распредустройств закрытого типа.
На стороне 6 кВ предусмотрена одинарная системы шин, акционеров. масляным выключателем с устройством автоматического включения резерва (АВР).
Распределительные устройства РУ-1, РУ-2, РУ-3 получают питание от ГПП по радиальной схеме с резервированием.
Распределительные сети напряжением до и выше 1000 В по территории завода прокладываются в кабельных траншеях.
2. Расчёт токов короткого замыкания
Расчёт токов КЗ производится для выбора и проверки эл.аппаратов, изоляторов и токоведущих частей.
Sc=600 МВА
Хс=0,8
115 кв
4000 кВА
35 кв
Л-1
L=4 см
К3
Sн=1600 кВА
Uкз=8%
К-1
Л-2
L=0,23 см
К2
6,3 кв
1600 кВА
0,23-0,4 кВ
ГПП
РУ-1
ТП-3
К-3
Хл
rл
Хт
Хл
rл
Расчётная схема














Sc=600 МВА
Х1
0,81
Х2
1,61
Х3
0,785
r3
0,33
Х4
3,0
К-1
Х5
0,267
r5
0,3
К-2
Схема замещения
(точки К-1, К-2)
Принимаем базисные условия:
Базисная мощность Sб=Sс=600 МВА;
Базисное напряжение Uб=Uср=6,3 кВ;
Базисный
ток Iб=.
Расчёт сопротивлений элементов системы электроснабжения в относительных единицах
Сопротивление системы:
Сопротивление воздушной линии ЛЭП-35 кВ
где Хо=0,4 Ом/км – реактивное сопротивление 1 км дл.
Сопротивление трансформаторов системы:
Х2=Хтб= Хвб +Хсб=1,61
(из расчета системы внешнего электроснабжения)
Сопротивление трансформаторов ГПП:
Сопротивление кабельной линии ГПП-РУ-1
r0 = 0,08 Ом/км; х0 = 0,07 Ом/км.
Точка К-1.
Сопротивление от источника питания до точки КЗ К-1
Х=х1+х2+х3+х4=0,8+1,61+0,785+3,0=6,2
R21=R3=0,33
Имеем R11/3Х1, следовательно, активное сопротивление при расчёте токов КЗ не учитываем.
Так как Х13, то периодическая слагающая тока КЗ для всех моментов времени одинакова и равна:
Iк=Iб/х=55/6,2=8,9 кА
Ударный ток КЗ
Iу=Ку2*I’’=1.82*8.9=22.7 кА
Где Ку – ударный коэффициент, принимаемый = 1,8.
Наибольшее действующее значение тока КЗ за первый пе6риод от начала процесса КЗ:
кА
Мощность трехфазного КЗ для произвольного момента времени:
МВА.
Точка К-2.
Сопротивление от источника питания до точки КЗ К-2
Х2=х1+х2+х3+х4+х5=0,8+1,61+0,785+3,0+0,267=6,5
R2=R3+R5=0,33+0,3=0,63
Имеем R21/3Х2, следовательно, активное сопротивление при расчёте токов КЗ не учитываем.
Так как Х23, то
Iк=Iб/х2=55/6,5=8,45 кА
Ударный ток КЗ
Iу=Ку2*I’’=1.82*8.45=21.6 кА
Где Ку – ударный коэффициент, принимаемый = 1,8.
Наибольшее действующее значение тока КЗ за первый пе6риод от начала процесса КЗ:
кА
Мощность трехфазного КЗ для произвольного момента времени:
МВА.
2.1. Выбор выключателей.
Проверяем предварительно выключатели типа МГГ-10-2000/500. Расчётная точка КЗ – точка К-1.
Расчётный ток термической устойчивости определяется по формуле:
где tнт – время, к которому отнесен номинальный ток термической устойчивости выключателей, принимаем = 10 с;
tп – приведенное время КЗ, с.
Учитывая время срабатывания защиты, принимаем действительное время отключ. КЗ (t) равным 1,5 с. Следовательно,
кА
Выбираем к выключателю провод типа ПЭ-2.
2.2. Выбор разъединителей
Выбор разъединителей в цепи предохранителей линии РУ-1-ТП-3 выполняется аналогично выбору выключателей и сводится в табл.1.9.
Таблица 1.9.
Проверяемая величина | Расчетные параметры | Тип предохр. разъед. | Номин. парам. пред.,разъед. | Формулы для проверки и расчета |
Предохранители | ||||
Номин.напр., кВ |
Uн уст=6 кВ |
ПК-6/150 |
Uн=6 кВ |
Uн Uн уст |
Номин.длит.ток, А |
Imax p=145 А |
Iн дл =150 А |
Iн дл Imax p |
|
Ном.ток откл., кА | I”=8,5 кА |
Iн отк =20 кА |
Iн отк I” |
|
Разъединители | ||||
Номин.напр., кВ |
Uн уст=6 кВ |
РВ-6/400 |
Uн=6 кВ |
Uн Uн уст |
Номин.длит.ток, А |
Imax p=145 А |
Iн дл =400 А |
Iн дл Imax p |
|
Ном.ток динам.уст.: а) амплит.знач., кА |
iу=21,6 кА |
iн дин=50 кА |
iн дин iу |
|
б) действ.знач., кА | Iу=12,8 кА |
Iн дин=29 кА |
Iн дин Iу |
|
Ном.ток терм.уст., кА |
Itн=2,72 кА |
Itн10=10 кА |
Itн10 Itн |
2.3. Шины ГПП
Выбор и проверку шин ГПП выполняем по максимальному рабочему току (Imax p), термической устойчивости (Sт уст), допустимому напряжению в шине на изгиб (доп).
Длительный допустимый ток определим:
,
где I’доп – длительно допустимый ток для одной полосы при tш=70оС, tв=25оС и расположении шин вертикально
к1 -0 поправочный коэффициент =0,95;
к2 – коэффициент длительно допустимого тока;
к3- поправочный коэффициент при tв , отличном от 25оС.
Выбираем окрашенные однополосные прямоугольные алюминиевые шины сечением 100х10 мм (S=1000 мм2), расположенные горизонтально с длительно допустимым током I’доп =1820 А;
Iдоп = 0,95*1*1*1820=1730 А.
Расчетное напряжение в шине на изгиб определяется по формуле:
,
где f – сила взаимодействия между шинами разных фаз, кг*с;
L – расстояние между опорными изоляторами, принимаемое = 90 см;
W – момент сопротивления сечения, см3.
f=1,75*10-2*(t2/а)=1,75*10-2*(21,62/25)=0,33 кг*с;
W=0,17*bh2=0,17*1*102=17 см2;
кг/см2.
Выбор и проверку шин сводим в табл. 1.10.
Таблица 1.10.
Проверяемая величина | Расчетные параметры | Марка сечения шин | Номин. данные шин | Формулы для проверки и расчета | |
Шины ГПП | |||||
Длительный допустимый ток, А |
Imax p=1690 А |
Iдоп =400 А |
Iдоп Imax p |
||
Сечение шины (проверка по термич.уст.) |
Sту min=110 мм2 |
S=1000 мм2 |
S Sту min |
||
Допуст.нагр. в шине на изгиб, кг/см2 |
расч=15,7 кг/см2 |
доп=650 кг/см2 |
допрасч |
||
Условия в одн.мех.резон. |
fс кр=62 Гц |
fс кр1=4555 Гц fс кр2=90110 Гц |
fс кр1 fс кр fс кр2 fс кр |
3. Релейная защита
Релейная защита и автоматика выполнены на переменном оперативном токе с применением выпрямительных блоков питания БПТ-1001 и БПН-1001. Компоновка ГПП 35/6 кВ дана в графической части.
Список использованных источников
Справочник по проектированию электроснабжения под ред. Ю.Г.Барыбина, Л.Е. Фёдорова и т.д. М.; Энергоатомиздат, 1990.
Учебное пособие для курсового и дипломного проектирования, А.А. Фёдоров, Л.Е. Старкова, М., Энергоатомиздат, 1987.
Электроснабжение промышленных промпредприятий, А.А. Фёдоров, Н.М. Римхейн, М.: Энергия, 1981.