Методика моделирования тепловизионных изображений
Методика моделирования
тепловизионных изображений.
В теории и практике проектирования тепловизионных оптико-электронных систем немаловажную роль играет моделирование тепловизионных изображений. Яркость тепловизионных изображений зависит как от распределения температуры по поверхности наблюдаемого объекта, так и от коэффициента излучения и ориентации визируемых элементов его поверхности - его формы. Кроме того, качество тепловизионного изображения зависит от передаточных характеристик оптической системы и всех звеньев тепловизора.
В основу теории моделирования тепловизионных изображений заложен процесс формирования видеосигналов, пропорционально потоку теплового излучения объекта для всего тепловизионного кадра, в котором содержится L строк и N элементов в строке. Величина видеосигнала U( N, L ) элемента разложения кадра описывается выражением:
U ( N, L ) = ( 1/ cosN,L)dS(N,L)SW(,T,y,z)a(d( 1 );
где - передний апертурный угол оптической системы тепловизора;
- угол между нормалью к элементу dS( N,L ) поверхности объекта и направлением наблюдения;
W(,T,y,z) - спектральная светимость элемента dS(N,L) поверхности объекта, имеющего абсолютную температуру T;
- индикатриса спектрального коэффициента излучения поверхности объекта;
S - абсолютная спектральная чувствительность приёмника излучения тепловизора;
,- границы спектральной чувствительности приемника излучения;
,a- спектральный коэффициент пропускания оптической системы и слоя атмосферы;
y,z - координаты элемента dS(N,L) поверхности объекта в пространстве предметов [ 2 ] .
Для анализа влияния на качество изображения передаточных характеристик оптической системы тепловизора, приёмника излучения, электронного блока обработки информации и видеоконтрольного устройства (ВКУ) используется распределение освещённости E(y’, z’), которое определяется по формуле:
jy’+z’
E(y’, z’)=’L(,h0(,hп,hэ,hв,e dd2
-00
где ’ - задний апертурный угол оптической системы тепловизора с интегральным коэффициентом пропускания ;
h0(,,hп,,hэ,,hв,- модуль передаточной характеристики соответственно оптической системы, приёмника излучения, электронного блока обработки информации и ВКУ тепловизора;
y’, z’ - координаты элемента dS поверхности объекта в пространстве изображений;
L(, - пространственно-частотный спектр яркости поверхности объекта;
(, - пространственные частоты, приведённые к плоскости изображений.
Тепловизионные методы в настоящее время широко используются в задачах распознавания и идентификации объектов. Но следует отметить, что пользуясь только обычными тепловизионными изображениями, величина видеосигналов в которых определяется выражением ( 1 ), распознать объекты внутри их контура практически невозможно. В чём причина потери информации о форме объекта внутри контура в обычных тепловизионных изображениях? Чтобы это выяснить рассмотрим рис.1. Согласно этому рисунку, справедливо равенство:
dS1 cos 1 = dS 2 cos 2 = dS3 cos 3 ( 3 )
Анализируя рис.1 и эту связь, можно сделать вывод, что именно здесь и происходит потеря информации о форме объекта внутри контура. Сопряжённость всех элементов dS’ и dS, соответственно, приводит к тому, что площадки, расположенные под меньшими углами(0, cos1), должны иметь меньшие размеры dS, чтобы равняться тем площадкам, которые расположены под большими углами(900, cos0).
В связи с этим становится ясной необходимость использования таких информационных оптических характеристик теплового излучения объектов, которые исключали бы пропорциональную связь параметров dS и cos. К таким величинам относятся поляризационные свойства теплового излучения поверхности объектов. По этой причине и представляют интерес задачи моделирования и обработки поляризационных тепловизионных изображений.
2.Теория и методы моделирования поляризационных
тепловизионных изображений объектов.
2.1.Теория моделирования поляризационных тепловизионных
изображений на основе вектор-параметра Стокса теплового
излучения.
Для подробного описания теории моделирования поляризационных тепловизионных изображений рассмотрим объект произвольной формы, который в декартовой системе координат описывается уравнением:
f(x,y,z) = 0.
Допустим, что этот объект ( рис.2 ) наблюдается из точки Н, где расположен чувствительный элемент тепловизионной системы. Выбираем на поверхности этого объекта элемент dS, который соответствует одному элементу разложения кадра. Наклон площадки dS по отношению к элементу приёмника определяется
углом между нормалью и направлением наблюдения rн. Тогда векторы n и rн определяют плоскость наблюдения. Коэффициент излучения рассматриваемого объекта имеет две составляющие: параллельную , которая лежит в плоскости наблюдения ( n*rн ), и перпендикулярную , которая перпендикулярна плоскости наблюдения. Положение элемента dS определяется в декартовой системе координат радиус-вектором R , а в сферической системе координат углами и .
Один из методов анализа поляризации пучка света - это метод вектор-параметра Стокса [ 3 ], характеризующий все виды и формы поляризации излучения поверхности объекта, который для нашего случая собственного излучения элементов dS(N, L) имеет вид:
U0 ( N, L) + U90 ( N, L)
Ui( N, L ) = U0 ( N, L) - U90 ( N, L) , ( 4 )
U45 ( N, L) - U135 ( N, L)
0
где i = 1, 2, 3, 4;
U0, U45, U90, U135 - величины сигналов, поляризованные, соответственно, под углами 00, 450, 900, 1350 относительно плоскости референции ( плоскости отсчёта ).
Степень поляризации теплового изображения зависит от величины видеосигналов поляризационных составляющих тепловизионных изображений элементов поверхности объекта с азимута поляризации соответственно равны 00, 450, 900, 1350. Величины видеосигналов U0, U90 в соответствии с тем, что коэффициент излучения можно представить в виде параллельной и перпендикулярной составляющих, запишем в виде:
U0 (N, L) = A (N, L) (n * j)2 + j)2 ], ( 5 )
U90 (N, L) = A (N, L) (n * k)2 + k)2 ]. ( 6 )
где 2
A ( N, L ) = ( 1/ cosN,L)dS(N,L)SW(,T,y,z)a(d
1
Тогда, например, зависимость степени поляризации теплового изображения, с азимутом tn=0, от величины видеосигналов двух поляризационных тепловизионных изображений элементов поверхности объекта, с азимутами поляризации 00, 900, можно представить в виде:
P’ (N, L) = [ U0 (N, L) - U90(N, L)] / [U0 (N, L)+U90(N, L)], ( 7 )
где
P’ (N, L) - степень поляризации изображений с азимутом tn=0.
Если пронумеровать вектор-параметр Стокса, то формула (4) примет вид:
1
U1(N, L) = U(N, L) P(N, L) cos2t(N, L) ( 8 )
P(N, L) sin2t(N, L)
0
где P(N, L) - степень поляризации излучения элемента dS(N, L) объекта;
t(N, L) - азимут поляризации излучения элемента dS(N, L).
На основе выражений (7) и (8) получим:
P’(N, L) = P(N, L) cos2 t(N, L). ( 9 )
Подставив формулы (5) и (6) в выражение (7), получим следующее выражение для степени поляризации P’(N, L):
[(n*j)2 - (n*k)2] +[(*j)2 - (*k)2]
P’(N, L) = ------------------------------------------------------------------ , ( 10 )
[(n*j)2 + (n*k)2] +[(*j)2 + (*k)2]
где j , k - единичные орты координатных осей OY и OZ;
,- единичные векторы, соответственно, параллельной и перпендикулярной компонент коэффициента излучения элемента dS.
Преобразуем выражение (10) в виде:
][(n*j)2 - (n*k)2] +[(*j)2 - (*k)2]
P’(N, L) = ------------------------------------------------------------------ , ( 11 )
][(n*j)2 + (n*k)2] +[(*j)2 + (*k)2]
Принимая во внимание выражение:
P() =[] / [] ,
получим связь величин и со степенью поляризации P():
= [1+ P()] / [1- P()].