Спроектировать привод конвейера по заданной схеме и характеристикам (WinWord97 + Corel Draw)
Содержание:
№ и наименование раздела |
№стр. |
Задание |
3 |
Исходные данные |
4 |
1. Энергосиловой и кинематический расчет |
5 |
1.1. Определение общего коэффициента полезного действия привода |
5 |
1.2. Выбор электродвигателя | 5 |
1.3. Определение мощностей, частот вращения и крутящих моментов на валах. | 5 |
2. Расчет зубчатой передачи |
7 |
2.1. Проектировочный расчет зубчатой передачи на контактную выносливость | 7 |
2.2. Проверочный расчет зубчатой цилиндрической передачи на контактную выносливость | 11 |
2.3. Проверочный расчет зубчатой цилиндрической передачи на выносливость при изгибе | 12 |
3. Расчет валов |
14 |
3.1. Усилие на муфте | 14 |
3.2. Усилия в косозубой цилиндрической передаче | 15 |
4. Разработка предварительной компоновки редуктора |
16 |
5. Проектный расчет первого вала редуктора |
17 |
6. Построение эпюр |
18 |
6.1. Определение опорных реакций | 19 |
6.2. Построение эпюр изгибающих и крутящих моментов | 20 |
6.3. Определение диаметров валов в опасных сечениях | 20 |
7. Выбор подшипников качения по динамической грузоподъемности для опор валов редуктора |
22 |
7.1. Выбор подшипников качения для первого вала редуктора | 22 |
7.2. Проектный расчет второго вала редуктора и подбор подшипников | 26 |
8. Уточнённый расчёт на усталостную прочность одного из валов редуктора | 27 |
8.1. Определение запаса усталостной прочности в сечении вала "А–А" | 28 |
8.2. Определение запаса усталостной прочности в сечении вала "Б–Б" | 28 |
8.3. Определение запаса усталостной прочности в сечении вала "B–B" | 29 |
9. Подбор и проверочный расчет шпонок |
30 |
9.1. Для участка первого вала под муфту | 30 |
9.2. Для участка первого вала под шестерню | 30 |
9.3. Для участка второго вала под колесо | 30 |
9.4. Для участка второго вала под цепную муфту | 31 |
10. Проектирование картерной системы смазки |
32 |
10.1. Выбор масла | 32 |
10.2. Объем масляной ванны | 32 |
10.3. Минимально необходимый уровень масла | 32 |
10.4. Назначение глубины погружения зубчатых колес | 32 |
10.5. Уровень масла | 32 |
10.6. Смазка подшипников качения консистентными смазками | 32 |
Литература |
33 |
Приложение |
Nвых = 2,8кВт
u = 5,6; n = 1500 об/мин
График нагрузки:
T1 = Tmax
Q1 = 1
1 = 0,1
Q2 = 0,8
Lh = 10000ч
1. Энергосиловой и кинематический расчет
1.1. Определение общего коэффициента полезного действия привода
общ = м1 ґ з ґ м2
3 – кпд зубчатой передачи с учетом потерь в подшипниках
3 = 0.97
м1 – кпд МУВП
м1 = 0,99
м2 – кпд второй муфты
м2 = 0.995
1.2. Выбор электродвигателя
Nвход = Nвых / общ
Nвход = 2.8 / 0.955 = 2.93 кВт
Выбираем двигатель 4А90L4
N = 2.2Квт
n = 1425 об/мин
d = 24мм
= (2.9 – 2.2) / 2.2 ґ 100% = 31.8% > 5% – этот двигатель не подходит
Беру следующий двигатель 4А100S4
N = 3.0кВт
n = 1435 об/мин
d = 28мм
1.3. Определение мощностей, частот вращения и крутящих моментов на валах.
1.3.1. Вал электродвигателя ("0")
N0 = Nвых = 2,93кВт
n0 = nдв = 1435 об/мин
T0 = 9550 ґ (N0 / n0) = 9550 ґ (2.93 / 1435) = 19.5Hм
1.3.2. Входной вал редуктора ("1")
N1 = N0 ґ м1 = 2,93 ґ 0,99 = 2,9кВт
n1 = n0 = 1435об/мин
Т1 = 9550 ґ (N1 / n1) = 9550 ґ (2.9 / 1435) = 19.3 Hм
1.3.3. Выходной вал редуктора ("2")
N2 = N1 ґ 3 = 2.9 ґ 0.97 = 2.813кВт
n2 = n1 / u = 1435 / 5.6 = 256.25 об/мин
Т2 = 9550 ґ (2,813 / 256,25) = 104,94Нм
1.3.4. Выходной вал привода ("3")
N3 = N2 ґ м2
N3 = 2.813 ґ 0.995 = 2.8кВт
n3 = n2 = 256.25 об/мин
Т3 = 9550 ґ N3 / n3
Т3 = 9550 ґ 2,8 / 256,25 = 104,35Нм
2. Расчет зубчатой передачи
2.1. Проектировочный расчет зубчатой передачи на контактную выносливость
2.1.1. Исходные данные
n1 = 1435об/мин
n2 = 256.25об/мин
Т1 = 19,3Нм
Т2 = 104,94Нм
u = 5.6
Вид передачи – косозубая
Ln = 10000ч
2.1.2. Выбор материала зубчатых колес
Сталь 45
HB=170…215 – колеса
Для зубьев шестерни HB1 = 205
Для зубьев колеса HB2 = 205
2.1.3. Определение допускаемого напряжения на контактную выносливость
[GH]1,2 = (GH01,2 ґ KHL1,2) / SH1,2 [МПа]
GH0 – предел контактной выносливости поверхности зубьев
GH0 = 2HB + 70
GH01 = 2 ґ 205 + 70 = 480МПа
GH02 = 2 ґ 175 + 70 = 420МПа
SH – коэффициент безопасности
SH1 = SH2 = 1.1
KHL – коэффициент долговечности
KHL = 6 NH0 / NHE
NH0 – базовое число циклов
NH0 = 1.2 ґ 107
NHE – эквивалентное число циклов при заданном переменном графике нагрузки
NHE = 60n1,2Lh(T1 / Tmax)3 ґ Lhi / Lh
NHE = 60n1,2Lh(1Q13 + 2Q23 + 3Q33)
n – частота вращения вала шестерни или вала зубчатого колеса
Lh – длительность службы
Lh = 10000ч
NHE1 = 60 ґ 1435 ґ 10000 (0.1 ґ 13 + 0.9 ґ 0.83) = 6 ґ 101 ґ 1.435 ґ 103 ґ 104(0.1 + 0.461) = 48.28 ґ 107
KHL1 = 6 1.2 ґ 107 / 48.28 ґ 107 = 0.539
KHL2 = 6 1.2 ґ 107 / 8.62 ґ 107 = 0.72
Принимаю KHL1 = KHL2 = 1
[GH]1 = 480 ґ 1 / 1.1 = 432,43МПа
[GH]1 = 420 ґ 1 / 1.1 = 381,82МПа
В качестве допускаемого контактного напряжения принимаю
[GH] = 0.5([GH]1 + [GH]2)
[GH] = 0.5(432.43 + 381.82) = 407.125
должно выполняться условие
[GH] = 1.23[GH]min
469.64 = 1.23 ґ 981.82
407.125 < 469.64
2.1.4. Определение межосевого расстояния
a = Ka(u + 1) 3 T2KH / (u[GH])2ba
Ka = 430МПа
ba – коэффициент рабочей ширины зубчатого венца
ba = 2bd / (u+1)
bd = 0.9
ba = 2ґ0.9 / (5.6 + 1) = 0.27
KH – коэффициент распределения нагрузки по ширине зубчатого венца
KH = 1.03
a = 430 ґ 6.6 3 104.94 ґ 1.03 / (5.6 ґ 407.125)2 ґ 0.27 = 2838 ґ 3 108.088 / 1403444.88 = 120.75
2.1.6. Согласование величины межосевого расстояния с ГОСТ2185–66
Принимаю a = 125
2.1.7. Определение модуля зацепления
m = (0.01…0.02)a
m = 0.015ґ125 = 1.88мм
2.1.8. Определение числа зубьев шестерни "z1" и колеса "z2"
zi = 2acos/mn
– угол наклона зубьев
Принимаю = 15
zc = 2 ґ 125 ґ 0.966 / 2.5 = 120.8 120
Число зубьев шестерни
z1 = z0 / (u+1) = 120 / 6.6 = 18.18 18
zmin = 17cos3 = 15.32
z1 zmin
Число зубьев колеса
z2 = zc – z1 = 120 – 18 = 120
uф = z2 / z1 = 102 / 18 = 5.67
u = 1.24%
2.1.9. Уточнение угла наклона зубьев
ф = arcos((z1ф + z2ф) mn / 2a)
ф = arcos((102 + 18) ґ 2 / 2 ґ 125) = arcos0.96 = 1512'4''
2.1.10. Определение делительных диаметров шестерни и колеса
d1 = mn ґ z1 / cosф = 2.18 / 0.96 = 37.5мм
d2 = mn ґ z2 / cosф = 2.102 / 0.96 = 212.5мм
2.1.11. Определение окружной скорости
V1 = d1n1 / 60000 = 3.14 ґ 37.5 ґ 1435 / 60000 = 2.82 м/с
2.1.12. Назначение степени точности n` передачи
V1 = 2.82 м/с n` = 8
2.1.13. Уточнение величины коэффициента ba
ba = (Ka3 (uф + 1)3 T2 KH) / (ua[bn]2 a3)
ba = 4303 ґ
6.63 ґ
104.94 ґ
1.03 / (5.6 ґ
407.125)2 ґ
1253 =
= 2.471 ґ
1012 / 10.152 ґ
1012 = 0.253
По ГОСТ2185–66 ba = 0.25
2.1.14. Определение рабочей ширины зубчатого венца
b = ba ґ a
b = 0.25 ґ 125 = 31.25
b = 31
2.1.15. Уточнение величины коэффициента bd
bd = b / d1
bd = 31.25 / 37.5 = 0.83
2.2. Проверочный расчет зубчатой цилиндрической передачи на контактную выносливость
2.2.1. Уточнение коэффициента KH
KH = 1.03
2.2.2. Определение коэффициента FHV
FHV = FFV = 1.1
2.2.3 Определение контактного напряжения и сравнение его с допускаемым
GH = 10800 ґ zEcosф / a = (T1 ґ (uф + 1)3 / b ґ uф) ґ KH ґ Kh ґ KHV [GH]МПа
zE = 1 / E
E = (1.88 – 3.2 ґ (1 / z1ф + 1 / z2ф)) ґ cosф
E = (1.88 – 3.2 ґ (1 / 18 + 1 / 102)) ґ 0.96 = 1.6039
zE = 1 / 1.6039 = 0.7895
Kh = 1.09
GH =
10800 ґ
0.7865 ґ
0.96 / 125 ґ
(19.3 / 31) ґ
(6.63 / 5.6) ґ
1.09 ґ
1.03 ґ1.1
=
= 65.484 ґ
6.283 = 411.43
GH = (411.43 – 407.125) / 407.125 ґ 100% = 1.05% < 5%
2.3. Проверочный расчет зубчатой цилиндрической передачи на выносливость при изгибе
2.3.1. Определение допускаемых напряжений на выносливость при изгибе для материала шестерни [GF]1 и колеса [GF]2
[GF]1,2 = (GF01,2 ґ KF) / SF1,2
GF0 – предел выносливости при изгибе
GF0 = 1.8HB
GF01 = 1.8 ґ 205 = 368
GF02 = 1.8 ґ 175 = 315
SF – коэффициент безопасности
SF = 1.75
KF – коэффициент долговечности
KF = 6 NF0 / NKFE
KF0 – базовое число циклов
NF0 = 4 ґ 106
NFE – эквивалентное число циклов
NFE = 60nLh ґ (Ti / Tmax)6 ґ Lhi / Lh
NFE1 = 60 ґ 1435 ґ 10000 ґ (0.1 ґ 16 +0.9 ґ 0.86) = 289.24 ґ 106
NFE2 = 60 ґ 256.25 ґ 10000 ґ (0.1 ґ 16 +0.9 ґ 0.86) = 55.68 ґ 106
KFL1 = 6 4 ґ 106 / 289.24 ґ 106 = 0.49
KFL2 = 6 4 ґ 106 / 55.68 ґ 106 = 0.645
Принимаю KFL1 = KFL2 = 1
[GF]1 = 369 / 1.75 = 210.86
[GF]2 = 315 / 1.75 = 180
2.3.2. Определение эквивалентных чисел зубьев шестерни и колеса
zv1 = z1 / cos3 = 20
zv2 = z2 / cos3 = 113
2.3.3. Определение коэффициентов формы зубьев шестерни и колеса
YF1 = 4.08
YF2 = 3.6
2.3.4. Сравнение относительной прочности зубьев
[GF] / YF
[GF]1 / YF1
[GF]1 / YF1 = 210.86 / 4.20 = 51.47
[GF]2 / YF2
[GF]2 / YF2 = 180 / 3.6 = 50
Менее прочны зубья колеса
2.3.6. Определение напряжения изгиба и сравнение его с допускаемым
GF2 = 2000 ґ T2 ґ KF ґ KF ґ KFV ґ YF2 ґ Y / b ґ m ґd2 [GF]МПа
E = b ґ sinф / ґ mn
E = 31.25 ґ 0.27 / 3.14 ґ 2 = 1.3436
KF – коэффициент, учитывающий распределение нагрузки между зубьями
KF = (4 + (E – 1) ґ (n` – 5)) / 4E
E = 1.60 ґ 39
n` = 8
KF = (4 + (1.6039 – 1) ґ (8 – 5) / 4 ґ 1.6039 = 0.9059
KF – коэффициент распределения нагрузки по ширине зубчатого венца
KF = 1,05
KFv – коэффициент, учитывающий динамическую нагрузку в зацеплении
KFv = 1.1
Y – коэффициент, учитывающий наклон зуба
Y = 1 – / 140
Y = 1 – 15.2 / 140 = 0.89
GF2 = 2000 ґ 104.94 ґ 0.9059 ґ 1.05 ґ 1.1 ґ 3.6 ґ 0.89 / 31 ґ 2 ґ 212.5 = 153,40
GF2 = 153.40 [GF] = 180
3. Расчет валов
3.1. Усилие на муфте
3.1.1. МУВП
FN = (0.2…0.3) tм
Ftм – полезная окружная сила на муфте
Ftм = 2000 T1p / D1
T1p = KgT1
Kg = 1.5
T1p = 1.5 ґ 19.3 = 28.95Нм
D1 – расчетный диаметр
D1 = 84мм
Ftм = 2000 ґ 28.95 / 84 = 689.28H
Ftм1 = 0.3 ґ 689.29 = 206.79H
3.1.2. Муфта цепная
D2 = 80.9мм
d = 25мм
T2p = T2 ґ Kg
Kg = 1.15
T2p = 1.15 ґ 104.94 = 120.68Hм
Ftм = 2000 ґ 120.68 / 80.9 = 2983.44H
Fм = 0.25 ґ 2983.44 = 745.86H
3.2. Усилия в косозубой цилиндрической передаче
Ft1 = Ft2 = 2000 ґ T1 / d1 = 2000 ґ 19.3 / 37.5 = 1029.33
3.2.2. Радиальная сила
Fr1 = Fr2 = Ft1 ґ tg / cos
= 20
= 15.2
Fr1 =1029.33 ґ tg20 / cos15.2 = 1029.33 ґ 0.364 / 0.96 = 390.29H
3.2.3. Осевая сила
Fa = FaI = Fai+1 = Fa ґ
Fa = 1029.39 ґ tg15.2 = 279.67H
Величины изгибающих моментов равны:
изгибающий момент от осевой силы на шестерню:
Ma1
= Fa1
ґ
d1
/2
Ma1
= 279.67 ґ
37.5 ґ
10-3 /
2 = 5.2438Hм
изгибающий момент от осевой силы на колесо:
Ma2 = Fa1 ґ d2 / 2
Ma2 = 279.67 ґ 212.5 ґ 10-3 / 2 = 29.7149Hм
4. Разработка предварительной компоновки редуктора
l = 2bm
q = bm
bm = 31 + 4 = 35мм
p1 = 1.5bm
p2 = 1.5bk
p1 = 1.5 52.5
a = p1 = 52.5
b = c = bm = 35мм
5. Проектный расчет первого вала редуктора
6. Построение эпюр
6.1. Определение опорных реакций
Вертикальная плоскость
Момент относительно опоры "II"
MвII = Fr1 ґ b – F ґ (d1 / 2) – FrIb ґ (b + c) = 0
FrIв = (FrI ґ b – Fa ґ (dt/2)) / (b + c)
FrIв
= (390.29 ґ
35 – 279.67 ґ
(37.5 / 2)) / (35 + 35) =
= (13660.15 – 5245.81) / 70 =
120.23
Момент относительно опоры "I"
MвI = FrвII ґ (b + c) – Fr1c – F ґ (d1 / 2) = 0
FIIв = (Fr1 ґ c + Fa ґ (d1 / 2)) / (b + c)
FIIв = (390.29 ґ 35 + 279.67 ґ (37.5 / 2)) / 70 = 270.06
Проверка
pв = FrIIв + FrIв – FrI
pв = 270.06 + 120.23 – 390.29 = 0
Горизонтальная плоскость
Момент относительно опоры "II"
MгII = Ft1 ґ b – FгIг ґ (b + c) + Fм ґ a
FrIг = (Ft1 ґ b + Fм1 ґ a) / (b + c)
FrIг = (1029,33 ґ 35 + 206,79 ґ 52,5) / (35 + 35) = (36026,55 + 10856,48) / 70 = 669,76
Момент относительно опоры "I"
MI = Fм ґ (a + b + c) – FrгII ґ (b +c) – Ft1 ґ c
FrIIг = (Ft1 ґ c – Fм1 ґ (a +b +c)) / (b + c)
FrIIг =(1029.33 ґ 35 – 206.79 ґ (35 + 35 + 52.5)) / 70 = 152.78
Проверка:
pг = FrIIг – Ft1 + FrIг + Fм1
pг = 152.78 – 1029.33 + 669.76 + 206.79 = 0
Определяю полные опорные реакции:
Ft1 = (FrвI)2 + (FrгI)2
Ft1 = 120.232 + 669.762 = 680.4
FtII = (FrвII)2 + (FrгII)2
FtII = 270.062 + 152.782 = –310.3
6.2. Построение эпюр изгибающих и крутящих моментов
Эпюра изгибающих моментов в вертикальной плоскости:
МвII = 0
М1`в = FrвII ґ b
М1`в = 270.06 ґ 35 = 3452.1 ґ 10-3
М1``в = FrвII ґ b – Fa1 ґ d1 / 2
М1``в = 9452.1 – 5243.8 = 4208.3 ґ 10-3
МвI = 0
Эпюра изгибающих моментов в горизонтальной плоскости:
МгII = Fм1 ґ a = 0
МгII = 206.79 ґ 52.5 = 10856.5 ґ 10-3
М1г = FrгI ґ b
М1г = 669.76 ґ 35 = 23441.6 ґ 10-3
6.3. Определение диаметров валов в опасных сечениях
В сечении "II"
МIIрез = (МвII)2 + (МгII)2
T = T1 = 19.3
МIIрез = (10.856)2 = 10.856
Приведенный момент:
МIIпр = (МвIIрез)2 + 0.45T12
МIIпр = (10.86)2 + 0.45 ґ 19.32 = 16.89
В сечении "I"
МIрез = (М''1в)2 + (МгI)2
МIрез = 4.2082 + 5.3472 = 6.804
МIпр = (МIрез)2 + 0.45T12
МIпр = 6.8042 + 0.45 ґ 19.32 = 14.62
Определяю диаметры валов
Валы из стали 45
В сечении "II"
dII = 10 3 MIIпр / 0.1[Gu]
dII = 10 3 16.89 / 0.1 ґ 75 = 13.11мм
[Gu] = 75МПа
принимаю dII = 25мм
В сечении "I"
dI = 10 3 MIпр / 0.1[Gu]
dII = 10 3 14.62 / 0.1 ґ 75 = 12.49мм
принимаю dI = 30мм
7. Выбор подшипников качения по динамической грузоподъемности для опор валов редуктора
7.1. Выбор подшипников качения для первого вала редуктора
7.1.1. Схема нагружения подшипников
7.1.2. Выбираю тип подшипников
FI = 680.29
FII = 310
Fa = 279.67
Fa / FrI = 0 / 680.4 = 0 ШРО №105
Fa / FrII = 279.67 / 680.4 = 0.9 ШРУ
Наиболее нагруженная опора "I" опора
Два радиально–упорных подшипника типов 36000, 46000, 66000
7.1.3. Задаюсь конкретным подшипником
ШРУО тип 306205
d = 25мм
D = 52 мм
B = 15 мм
R = 1.5мм
C = 16700H
C0 = 9100H
Fa1 / C0 = 279.67 / 9100 = 0.031
Параметр осевого нагружения
l = 0.34
x = 0.45
y = 1.62
– угол контакта
= 12
7.1.4. Определение осевых составляющих реакций от радикальных нагрузок в опорах
S1,2 = l' ґ FrI,II
FrI / C0 = 680.4 / 9100 = 0.075
FrII / C0 = 310.3 / 9100 = 0.34
l'1 = 0.335
l'2 = 0.28
SI = 0.335 ґ 680.4 = 227.93
SII = 0.28 ґ 310.3 = 86.88
7.1.5. Устанавливаю фактические осевые силы FaI и FaII, действующие на опоры "I" и "II"
Fa + SI = 279.67 + 227.93 = 507.6 SII
507.6 86.88
FaI = SI = 227.93
FaII = Fa + SI = 507.6
7.1.6. Определяю эквивалентную нагрузку для каждой опоры
V = 1
Pi = (cVFri + yFai) ґ K ґ Kт
K = 1.1
Kт = 1.4
PI
= (0.45 ґ
1 ґ
680.4 + 1.62 ґ
227.93) ґ
1.1 ґ
1.4 =
= (306.18 + 369.25) ґ
1.54 = 1040.16
PII = 0.45 ґ 1 ґ 310.3 ґ 1.62 ґ 507.6 ґ 1.54 = 1481.4
7.1.7. Определяем эквивалентную приведенную нагрузку, действующую на наиболее нагруженную опору
PIIпр = Kпр ґ PII
Kпр = 3 11 + 22
Kпр = 3 1 ґ 0.1 + 0.83 ґ 0.9 = 3 0.5608 = 0.825
PIIпр = 0.825 ґ 1481.4 = 1222.16
7.1.8. По заданной номинальной долговечности в [час] Lh, определяю номинальную долговечность в миллионах оборотов
L = 60 ґ n ґ Lh / 106
L = 60 ґ 1435 ґ 100000 / 106 = 861
7.1.9. Определяю расчетную динамику подшипника
c = PIIпр 3.3 z
c = 1222.16 3.3 861 = 9473.77
Основные характеристики принятого подшипника:
Подшипник № 36205
d = 25мм
D = 52мм
C = 16700H
= 15мм
r = 1.5мм
C0 = 9100H
n = 13000 об/мин
7.2. Проектный расчет второго вала редуктора и подбор подшипников
d2 = c 3 N2 / n2
c = d1 / (3 N1 / n1)
c = 30 / (3 2.9 / 1435) = 238.095
d2 = 238.095 3 2.813 / 256.25 = 52.85
Принимаю: dII = 45
Подшипник № 36209
d = 45мм
D = 85мм
= 19мм
r = 2мм
c = 41200H
C0 = 25100H
n