Xreferat.com » Рефераты по биологии и химии » Химическая и радиационная стойкость керамики

Химическая и радиационная стойкость керамики

молекул в веществе образуются дополнительные электроны и положительные ионы. Во внешнем электрическом поле образованная пара зарядов участвует в процессах электрической проводимости, если составляющие ее положительный ион и электрон не рекомбинируют друг с другом.

Установлено, что ионизационная проводимость диэлектрических материалов связана с мощностью дозы излучения. Это связано с образованием электронных дефектов и переходом электронов из валентной зоны в зону проводимости. При увеличении энергии квантов и мощности потока появляются точечные дефекты - вакансии и междоузельные атомы.

Химическая и радиационная стойкость керамики

Нагревание в процессе облучения способствует не только дополнительному подводу энергии к материалу, но и облегчает ее рассеивание за счет повышения подвижности атомов. При некоторых условиях наступает динамическое равновесие.

Зависимость удельной проводимости корундовой керамики от температуры для необлученного (1) и облученного при дозе Р=10' р/с (2) образцов.

При дальнейшем повышении температуры значение проводимости приближается к исходному.

Изменение прочностных свойств керамических материалов после облучения потоком 2*1020 нейтр/см2 сравнительно невелико. Это связано с тем, что при таком потоке образуются преимущественно точечные дефекты, которые мало влияют на прочность. С увеличением дозы до 1,09*1021 нейтр/см2 прочность снижается, что указывает на появление более крупных дефектов, выступающих в роли концентратора напряжений.

Способность к аккумулированию потока энергии ионизирующего излучения зависит от ориентации к нему кристаллов керамики, наличия примесей, стеклофазы, пор и т. д. В результате в керамике возникают неравномерные внутренние механические напряжения. Этим объясняют некоторые сдвиги максимумов и минимумов на кривой зависимости электрической проводимости от температуры.

Известно, что стеклофаза обладает более высокой энергией Гиббса, чем кристаллическая фаза. При не слишком большой энергии квантов и мощности потока излучения ее подвод к стеклофазе позволяет системе рассеивать ее часть на создание более упорядоченных диссипативных структур, вплоть до образования зародышей кристаллической фазы. При этом стеклофаза сжимается, а ее плотность возрастает. По сравнению со стеклофазой кристаллическая фаза уже является упорядоченной. В таких условиях она вынуждена в большей степени аккумулировать энергию в виде точечных дефектов, в первую очередь вакансий, которые уменьшают плотность материала и приводят к увеличению его объема. Величина локальных объемных изменений в материале будет зависеть от вида кристаллической и стеклообразных фаз и их содержания. В керамике формируются локальные области растяжения и сжатия. В результате может возникнуть такое соотношение сжимающих и растягивающих напряжений, которое приводит даже к увеличению прочности керамики в целом.

2. Тугоплавкие бескислородные соединения.

К неоксидным тугоплавким соединениям относят бескислородные соединения металлов с такими элементами, как азот — нитриды; углерод — карбиды; бор - бориды; кремний - силициды; сера -сульфиды; фосфор — фосфиды и с другими элементами, а также соединения с указанными выше элементами и кислородом — с азотом и кислородом — оксинитриды, с углеродом и кислородом — оксикарбиды, с кремнием, алюминием, кислородом и азотом - сиалоны.

Многие из этих соединений обладают высокими температурами плавления, прочностью химических связей, теплопроводностью, электрической проводимостью или диэлектрическими свойствами, химической стойкостью. Это делает их перспективными для применения в качестве конструкционной керамики — деталей двигателей внутреннего сгорания и газотурбинных двигателей, режущих инструментов, керамических подшипников. Керамику с электрической проводимостью используют для изготовления нагревательных элементов. Высокая прочность химической связи позволяет использовать эти материалы в качестве легкой брони, поскольку при очень быстром механическом взаимодействии пули с броней большая часть кинетической энергии тратится на разрыв химических связей броневого материала.

Сочетание высоких диэлектрических свойств с высокой теплопроводностью позволяет успешно применять некоторые соединения в электронной технике.

Отличительной особенностью неоксидных соединений является значительно большая по сравнению с оксидами доля ковалентности и прочность химических связей. Кристаллы и поликристаллические тела многих из этих соединений обладают высокой твердостью и прочностью, что затрудняет механическую обработку изделий. Весьма высокая электрическая проводимость многих видов неоксидной керамики позволяет эффективно применять электроискровые (электроэрозионные) методы обработки, для которых твердость материала не имеет решающего значения.

Разрыв прочных химических связей в кристаллах, происходящий при их плавлении, требует больших энергетических затрат, поэтому эти соединения имеют высокие температуры плавления.

Высокодисперсные порошки из неоксидных соединений получают различными методами: твердофазным, газофазным, СВС, плазмохимическим.

Формование изделий из неоксидной керамики осуществляют полусухим прессованием, пластическим прессованием и литьем.

Для спекания неоксидной керамики обычно используют реакционное спекание или специальные добавки, которые образуют жидкую фазу и обеспечивают жидкофазное спекание.

Существенным недостатком неоксидных соединений является их способность к окислению кислородом воздуха. Это может приводить к потере изделием своих эксплуатационных свойств. Устойчивость к окислению у соединений, не содержащих кислорода, как правило, ниже, чем у соединений, содержащих кислород. Так, нитрид кремния окисляется быстрее, чем оксинитрид. Однако скорость окисления в первую очередь зависит от свойств образующейся оксидной пленки. Образование сплошной оксидной пленки резко снижает скорость процесса. Для предохранения от окисления на поверхности изделий часто специально создают защитное оксидное покрытие. Проблемой является сохранение сплошности этого покрытия при термоциклировании из-за различия в ТКЛР с основной фазой керамики.

1. Керамика из карбидов.

Карбиды обладают наиболее высокими среди бескислородных соединений температурами плавления, высокой прочностью и твердостью. Это позволяет использовать их для изготовления высокоогнеупорной, износостойкой, высокопрочной керамики, например форсунок, фильер для волочения проволоки, режущих инструментов, подшипников, деталей двигателей, в авиационной и ракетно-космической технике.

Большинство карбидов обладает высокой теплопроводностью и является проводниками или полупроводниками. Их можно применять в электронике, электротехнике, в частности для получения электронагревательных элементов. Электрическая проводимость карбидов позволяет использовать для их обработки электроэрозионные методы. По сравнению с другими бескислородными соединениями карбиды, как правило, более устойчивы к окислению, и соответственно их можно использовать в окислительной среде при более высоких температурах.

WC и TiC широко используют в качестве основной фазы, добавок, покрытий в режущих инструментах. TiC и NbC применяют для замены дефицитных добавок ТаС в поликарбидных режущих инструментах.

Карбид бора В4С имеет плотность 2,52 г/см3. Керамику с относительной плотностью 93—98% получают при 1700—2200°С без приложения давления и методом горячего прессования при использовании в качестве добавок соединений алюминия и кремния. Керамика имеет прочность при изгибе 330-680 МПа, твердость по Виккерсу 22 ГПа. Благодаря высокой твердости, прочности и легкости В4С используют для изготовления легкой керамической брони, компонентов композиционных инструментов и других керамических композиционных материалов.

Наибольшее применение находит карбид кремния, иногда называемый карборундом, который существует в виде двух основных модификаций: β-SiC - кубический со структурой сфалерита и α-SiC - гексагональный. Наличие в керамике анизотропных по ТКЛР кристаллов α-SiC приводит к тому, что прочность материала с ростом температуры возрастает и имеет максимум. Для самосвязанного SiC он находится в области 1200°С.

Алмазоподобную структуру с высокой прочностью химической связи кристаллам обеспечивает sp3-гибридизация в SiC..

Карбид кремния обладает высокой химической стойкостью. При комнатной температуре не взаимодействует с кислотами и растворами щелочей. При 200-250°С взаимодействует с НзР04. SiC взаимодействует с фтором, а выше 600°С — с хлором. Реагирует с расплавами гидроксидов, карбонатов, сульфидов щелочных металлов. В окислительной атмосфере керамика может служить до 1500—1650°С. Образующаяся на поверхности пленка SiO2 замедляет дальнейшее окисление. Выше 1300°С пленка переходит в кристобалит. Различия в ТКЛР SiO2 и SiC, а также объемные изменения при полиморфных переходах кристобалита приводят к нарушению сплошности пленки при термоциклировании и потере ее защитных средств. На воздухе керамику из SiC можно кратковременно использовать до 1650°С. Окислительное действие окружающей среды является причиной медленного роста трещин в материале, находящемся под действием механической нагрузки.

Основную часть SiC получают по способу Ачесона, основанному на восстановлении SiO2 углеродом в электрических керновых печах сопротивления при 2200-2700°С. Образующиеся поликристаллические сростки дробят, рассевают, а полученные порошки, состоящие из α-SiC, используют в основном в качестве абразивов, для изготовления электронагревателей, огнеупоров и частично конструкционной керамики. Отечественная промышленность выпускает карбид кремния двух видов — зеленый и черный.

Высококачественную конструкционную керамику изготовляют из высокодисперсных порошков, получаемых химическими методами.

Изделия сложной формы, такие как роторы газовых турбин, изготовляют методами литья под давлением из неводных, например парафиновых, шликеров.

Спекание без добавок при 2150-2200°С не позволяет получать беспористые изделия как из-за низкого коэффициента объемной диффузии, так и из-за высокой летучести SiC при этих температурах. Получаемый материал называют рекристаллизованным карбидом кремния. Благодаря отсутствию добавок он мало меняет свои прочностные свойства до 1500°С.

Реакционное спекание осуществляют за счет взаимодействия смеси SiC+C с кремнием.

Использование добавок бора и (или) алюминия с углеродом позволяет получать без горячего прессования беспористую керамику, применяемую в качестве конструкционной.

Для исключения нежелательного перехода β→α-SiC в процессе службы, приводящего к снижению прочности, получают керамику из α-SiC. Облегчению перехода β→α -SiC способствуют добавки, например BeO, A1 N , а также введение до 5 мас. % α-SiC в качестве затравок.

Керамические детали из плотного SiC используют для изготовления роторов,газовых турбин, накладок на поршни, подшипников, фильер, высокотемпературных теплообменников, форсунок, горелок и т. д. Керамические пресс-формы из SiC выдерживают до 500 тыс. циклов. Для предотвращения окисления на поверхность изделий наносят оксидные покрытия, которые часто содержат редкоземельные элементы. Для спекания карбида кремния можно применять различные связки: оксидные — кремнеземистые, алюмосиликатные; нитридные — Si3N4 и оксинитридные – Si2ON2.

Полупроводниковые свойства SiC на оксидных алюмосиликатных связках используют в производстве варисторов — элементов с нелинейными вольт-амперными характеристиками.

Добавка ВеО позволяет получить керамику, в которой кристаллы SiC разделены электроизолирующими, но теплопроводными прослойками. Такую керамику можно использовать в качестве теплопроводящих электроизолирующих элементов электронных приборов (подложки, прокладки, корпуса и т. д.).

Карбид кремния широко используют при производстве электронагревателей. Для этой цели применяют зеленый SiC, который отличается от черного зависимостью электросопротивления от температуры.

Повышения термостойкости нагревателей добиваются использованием зернистых масс, которые формуют обычно пластическим методом. Наличие пор, в первую очередь открытых (20-25%), увеличивает окисление и уменьшает срок службы. При окислении по границам кристаллов образуются прослойки SiO2 и сопротивление нагревателей возрастает. Это явление называют старением нагревателей. Максимальная допустимая рабочая температура на поверхности промышленных кремниевых электронагревателей при службе в воздушной среде составляет 1450°С, ее повышение до 1500—1600°С возможно за счет снижения открытой пористости до 10-12%. Газовые среды основного характера, особенно содержащие оксиды щелочных металлов, например при варке некоторых стекол, резко сокращают срок службы нагревателей. Для увеличения срока службы на рабочую часть нагревателей наносят специальные оксидные покрытия, защищающие карбид кремния от окисления.

2.Керамика из нитридов.

Нитриды - соединения металлов и неметаллов с азотом. Они, как правило, имеют более низкие температуры плавления и менее устойчивы к окислению, чем карбиды соответствующих элементов.

Большинство нитридов относится к фазам внедрения, обладает металлическим блеском, электрической проводимостью, большой твердостью, но они нестойки к воде, кислотам и щелочам, что ограничивает их применение. Некоторые нитриды элементов III и IV групп периодической системы не относятся к фазам внедрения и являются полупроводниками или диэлектриками.

Нитриды в качестве основной фазы или добавок используют в керамике или керамических композиционных материалах, применяемых в машиностроении. Например, нитрид титана используют как основную фазу или как добавку в керамике для режущих инструментов и подшипников. Методом горячего изотермического прессования получают плотную керамику на основе TiN с прочностью при изгибе 500 Мпа. В воздушной среде керамику можно использовать до 750°С. Наиболее широко используют нитриды кремния, алюминия и бора.

Порошки нитридов получают описанными выше для бескислородных соединений способами из исходных элементов или элемент- и азотсодержащих соединений. Широко распространены карботермические методы. Вариантом этих методов является обработка в азотсодержащей среде соответствующих элементоорга-нических соединений. Эффективным является предварительное получение имидов при низких температурах из элементсодержащих соединений (хлоридов, гидридов, алкоксидов) и жидкого аммиака. Имиды можно рассматривать как соединения, получаемые при замене части водорода в аммиаке на соответствующий элемент. Дальнейшая термообработка в азоте приводит к образованию высокодисперсных порошков нитридов.

Кремний образует с азотом только одно соединение — нитрид кремния Si3N 4 в виде двух гексагональных модификаций: α-Si3N4 c плотностью 3,169 г/см3 и β-Si3N4 с плотностью 3,192 г/см3. В зависимости от содержания примесей или добавок, состава и давления газовой среды, а также температуры возможен переход из одной модификации в другую, чаще из α в β.

. Более низкий, чем у SiC, ТКЛР в сочетании с высокой долей ковалентности и прочностью химических связей обеспечивает керамике на основе Si3N4 более высокую термостойкость. Теоретически по комплексу термомеханических свойств керамика на основе Si3N4 наиболее подходит для применения в машиностроении.

Нитрид кремния является хорошим диэлектриком. Его нельзя обрабатывать электроискровым методом. Чтобы исключить этот недостаток, в керамику на основе нитрида кремния можно ввести достаточное для образования непрерывной фазы количество электропроводящей добавки, например TiC, SiC, TiN и т. д.

Нитрид кремния обладает устойчивостью к кислотам, парам воды, многим расплавленным металлам: Al, Pb, Zn, Sn и др., достаточно устойчив к окислению при умеренных температурах. Это позволяет применять его в качестве основной фазы при изготовлении резцов для обработки нержавеющих сталей, цветных металлов и их сплавов. Они обеспечивают скорость резания до 1000 м/мин, не содержат дефицитных компонентов, менее изнашиваются и по комплексу свойств превосходят резцы на основе WC. Экономия затрат от замены резцов на основе WC на резцы из SiзN4 составляет 25-70%.

Шариковые подшипники из нитрида кремния успешно используют при температуре до 800°С, в то время как металлические — не выше 120°С. Хорошие электроизолирующие свойства позволяют использовать нитрид кремния для изготовления свечей зажигания. Малая истинная плотность SiзN4 является дополнительным преимуществом при использовании керамики в двигателях и особенно в авиационной и ракетно-космической технике.

Для синтеза высокодисперсных порошков SiзN4 используют те же методы, что и для других бескислородных соединений, например, SiC.

Керамику на основе SiзN4 cпекают различными методами: реакционным спеканием, горячим прессованием, их комбинацией.

Реакционное спекание без добавок обычно не позволяет получать изделия с относительной плотностью >85%. Добавки, особенно при использовании горячего изотермического прессования, позволяют получать плотную и высокопрочную керамику, но ее прочность при высоких температурах резко падает при появлении жидкой фазы. В качестве добавок наиболее часто используют оксиды щелочно-земельных и редкоземельных металлов. Наиболее широко применяют добавки: MgO, Y2O3, СеO2. Обычно материалы с наиболее дешевой добавкой MgO имеют более низкую прочность при комнатной и высоких температурах, что обусловлено более низкой прочностью силикатов магния, образующихся на границах кристаллов. Хорошие результаты дают комплексные добавки: ЗY2Оз·5А120з; ВеО·Аl2Оз и т. п. Плотную керамику без добавок получают также при использовании реакционного спекания порошка кремния под высоким и меняющимся по определенному закону давлением азота.

Для повышения устойчивости к окислению при высоких температурах на поверхности изделия предварительно создают оксидный слой, содержащий SiO2 и другие оксиды. Простейшим способом является резкий нагрев деталей в окислительной среде и образование на их поверхности сплошного слоя SiO2. На воздухе керамику из SiзN4, полученную реакционным спеканием, можно использовать до 1400°С, а горячепрессованную - до 1500°С.

Алюминий образует с азотом два соединения - нитрид алюминия A1N и триазид алюминия Аl(Nз)з - очень гигроскопичное взрывчатое вещество белого цвета. A1N имеет только одну гексагональную модификацию типа вюрцита, что упрощает технологию керамики. Нитрид алюминия обладает твердостью 9 по шкале Мооса, плотностью 3,27 г/см3. Выше 1900-2000°С A1N разлагается. Он имеет высокую химическую стойкость к расплавам многих цветных металлов и их сплавов. На

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: